• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sequential Collaborative Ranking Using ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1007/978-3-319-46672-9_33
Title :
Sequential Collaborative Ranking Using (No-)Click Implicit Feedback
Author(s) :
Guillou, Frédéric [Auteur]
Sequential Learning [SEQUEL]
Gaudel, Romaric [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Preux, Philippe [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Conference title :
The 23rd International Conference on Neural Information Processing (ICONIP'16)
City :
Kyoto
Country :
Japon
Start date of the conference :
2016-10-16
Journal title :
Lecture Notes in Computer Science
Publication date :
2016
English keyword(s) :
Recommender Systems
Sequential Recommendation
Learning to Rank
Implicit Feedback
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
English abstract : [en]
We study Recommender Systems in the context where they suggest a list of items to users. Several crucial issues are raised in such a setting: first, identify the relevant items to recommend; second, account for the feedback ...
Show more >
We study Recommender Systems in the context where they suggest a list of items to users. Several crucial issues are raised in such a setting: first, identify the relevant items to recommend; second, account for the feedback given by the user after he clicked and rated an item; third, since new feedback arrive into the system at any moment, incorporate such information to improve future recommendations. In this paper, we take these three aspects into consideration and present an approach handling click/no-click feedback information. Experiments on real-world datasets show that our approach outperforms state of the art algorithms.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01406338/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01406338/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01406338/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • main.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • main.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017