• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Online learning with noisy side observations
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Online learning with noisy side observations
Author(s) :
Kocák, Tomáš [Auteur]
Sequential Learning [SEQUEL]
Neu, Gergely [Auteur]
Sequential Learning [SEQUEL]
Universitat Pompeu Fabra [Barcelona] [UPF]
Valko, Michal [Auteur] refId
Sequential Learning [SEQUEL]
Conference title :
International Conference on Artificial Intelligence and Statistics
City :
Seville
Country :
Espagne
Start date of the conference :
2016-05-09
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
We propose a new partial-observability model for online learning problems where the learner, besides its own loss, also observes some noisy feedback about the other actions, depending on the underlying structure of the ...
Show more >
We propose a new partial-observability model for online learning problems where the learner, besides its own loss, also observes some noisy feedback about the other actions, depending on the underlying structure of the problem. We represent this structure by a weighted directed graph, where the edge weights are related to the quality of the feedback shared by the connected nodes. Our main contribution is an efficient algorithm that guarantees a regret of O(√ α * T) after T rounds, where α * is a novel graph property that we call the effective independence number. Our algorithm is completely parameter-free and does not require knowledge (or even estimation) of α *. For the special case of binary edge weights, our setting reduces to the partial-observability models of Mannor & Shamir (2011) and Alon et al. (2013) and our algorithm recovers the near-optimal regret bounds.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Extraction et transfert de connaissances dans l'apprentissage par renforcement
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01303377/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01303377/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01303377/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • kocak2016online.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • kocak2016online.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017