• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hierarchical approach for energy-efficient ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.suscom.2014.08.003
Title :
A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems
Author(s) :
Dorronsoro, Bernabé [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Nesmachnow, Sergio [Auteur]
UDELAR, Facultad de Ingenieria [Montevideo] [UDELAR]
Zomaya, Albert [Auteur]
Centre for Distributed and High Performance Computing
Talbi, El-Ghazali [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Bouvry, Pascal [Auteur]
University of Luxembourg [Luxembourg]
Journal title :
Sustainable Computing : Informatics and Systems
Pages :
252-261
Publisher :
Elsevier
Publication date :
2014-12
ISSN :
2210-5379
English keyword(s) :
Energy efficiency
Workflows
Multicore
Scheduling heuristics
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
English abstract : [en]
This article presents a two-level strategy for scheduling large workloads of parallel applications in multicore distributed systems, taking into account the minimization of both the total computation time and the energy ...
Show more >
This article presents a two-level strategy for scheduling large workloads of parallel applications in multicore distributed systems, taking into account the minimization of both the total computation time and the energy consumption of solutions. Nowadays, energy efficiency is of major concern when using large computing systems such as cluster, grid, and cloud computing facilities. In the approach proposed in this article, a combination of higher-level (i.e., between distributed systems) and lower-level (i.e., within each data-center) schedulers are studied for finding efficient mappings of workflows into the resources in order to maximize the quality of service, while reducing the energy required to compute them. The experimental evaluation demonstrates that accurate schedules are computed by using combined list scheduling heuristics (accounting for both problem objectives) in the higher level, and ad-hoc scheduling techniques to take advantage of multicore infrastructures in the lower level. Solutions are also evaluated with two user- and administrator-oriented metrics. Significant improvements are reported on the two problem objectives when compared with traditional load-balancing and round-robin techniques.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017