• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite-time Attractive Ellipsoid Method: ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1080/00207179.2015.1118660
Title :
Finite-time Attractive Ellipsoid Method: Implicit Lyapunov Function Approach
Author(s) :
Mera, Manuel [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Polyakov, Andrey [Auteur] refId
Non-Asymptotic estimation for online systems [NON-A]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Perruquetti, Wilfrid [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Non-Asymptotic estimation for online systems [NON-A]
Journal title :
International Journal of Control
Publisher :
Taylor & Francis
Publication date :
2015-12-15
ISSN :
0020-7179
English keyword(s) :
LMI linear matrix inequality
Robust Control
Lyapunov Methods
HAL domain(s) :
Mathématiques [math]/Optimisation et contrôle [math.OC]
English abstract : [en]
A finite-time version, based on Implicit Lyapunov Functions (ILF), for the Attractive Ellipsoid Method (AEM) is developed. Based on this, a robust control scheme is presented to ensure finite-time convergence of the solutions ...
Show more >
A finite-time version, based on Implicit Lyapunov Functions (ILF), for the Attractive Ellipsoid Method (AEM) is developed. Based on this, a robust control scheme is presented to ensure finite-time convergence of the solutions of a chain of integrators with bounded output perturbations to a minimal ellipsoidal set. The control parameters are obtained by solving a minimization problem of the " size " of the ellipsoid subject to a set of Linear Matrix Inequalities (LMI's) constraints, and by applying the implicit function theorem. A numerical example is presented to support the implementability of these theoretical results.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Comment :
http://dx.doi.org/10.1080/00207179.2015.1118660
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01227455/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01227455/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01227455/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017