Finite-time Attractive Ellipsoid Method: ...
Document type :
Article dans une revue scientifique
Title :
Finite-time Attractive Ellipsoid Method: Implicit Lyapunov Function Approach
Author(s) :
Mera, Manuel [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Polyakov, Andrey [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Perruquetti, Wilfrid [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Non-Asymptotic estimation for online systems [NON-A]
Non-Asymptotic estimation for online systems [NON-A]
Polyakov, Andrey [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Perruquetti, Wilfrid [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Non-Asymptotic estimation for online systems [NON-A]
Journal title :
International Journal of Control
Publisher :
Taylor & Francis
Publication date :
2015-12-15
ISSN :
0020-7179
English keyword(s) :
LMI linear matrix inequality
Robust Control
Lyapunov Methods
Robust Control
Lyapunov Methods
HAL domain(s) :
Mathématiques [math]/Optimisation et contrôle [math.OC]
English abstract : [en]
A finite-time version, based on Implicit Lyapunov Functions (ILF), for the Attractive Ellipsoid Method (AEM) is developed. Based on this, a robust control scheme is presented to ensure finite-time convergence of the solutions ...
Show more >A finite-time version, based on Implicit Lyapunov Functions (ILF), for the Attractive Ellipsoid Method (AEM) is developed. Based on this, a robust control scheme is presented to ensure finite-time convergence of the solutions of a chain of integrators with bounded output perturbations to a minimal ellipsoidal set. The control parameters are obtained by solving a minimization problem of the " size " of the ellipsoid subject to a set of Linear Matrix Inequalities (LMI's) constraints, and by applying the implicit function theorem. A numerical example is presented to support the implementability of these theoretical results.Show less >
Show more >A finite-time version, based on Implicit Lyapunov Functions (ILF), for the Attractive Ellipsoid Method (AEM) is developed. Based on this, a robust control scheme is presented to ensure finite-time convergence of the solutions of a chain of integrators with bounded output perturbations to a minimal ellipsoidal set. The control parameters are obtained by solving a minimization problem of the " size " of the ellipsoid subject to a set of Linear Matrix Inequalities (LMI's) constraints, and by applying the implicit function theorem. A numerical example is presented to support the implementability of these theoretical results.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Comment :
http://dx.doi.org/10.1080/00207179.2015.1118660
Collections :
Source :
Files
- https://hal.inria.fr/hal-01227455/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01227455/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01227455/document
- Open access
- Access the document