• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Benchmarking the Local Metamodel CMA-ES ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Benchmarking the Local Metamodel CMA-ES on the Noiseless BBOB'2013 Test Bed
Author(s) :
Auger, Anne [Auteur]
Machine Learning and Optimisation [TAO]
Brockhoff, Dimo [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Hansen, Nikolaus [Auteur]
Machine Learning and Optimisation [TAO]
Conference title :
GECCO (Companion), workshop on Black-Box Optimization Benchmarking (BBOB'2013)
City :
Amsterdam
Country :
Pays-Bas
Start date of the conference :
2013-07-06
Publication date :
2013-07-06
HAL domain(s) :
Informatique [cs]/Réseau de neurones [cs.NE]
English abstract : [en]
This paper evaluates the performance of a variant of the local-meta-model CMA-ES (lmm-CMA) in the BBOB 2013 expensive setting. The lmm-CMA is a surrogate variant of the CMA-ES algorithm. Function evaluations are saved by ...
Show more >
This paper evaluates the performance of a variant of the local-meta-model CMA-ES (lmm-CMA) in the BBOB 2013 expensive setting. The lmm-CMA is a surrogate variant of the CMA-ES algorithm. Function evaluations are saved by building, with weighted regression, full quadratic metamodels to estimate the candidate solutions' function values. The quality of the approximation is appraised by checking how much the predicted rank changes when evaluating a fraction of the candidate solutions on the original objective function. The results are compared with the CMA-ES without meta-modeling and with previously benchmarked algorithms, namely BFGS, NEWUOA and saACM. It turns out that the additional meta-modeling improves the performance of CMA-ES on almost all BBOB functions while giving significantly worse results only on the attractive sector function. Over all functions, the performance is comparable with saACM and the lmm-CMA often outperforms NEWUOA and BFGS starting from about 2D^2 function evaluations with D being the search space dimension.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-00825840/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-00825840/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-00825840/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017