Robust Fault Tolerant Control of DFIG Wind ...
Type de document :
Article dans une revue scientifique
Titre :
Robust Fault Tolerant Control of DFIG Wind Energy Systems with Unknown Inputs
Auteur(s) :
Kamal, Elkhatib [Auteur]
Systèmes Tolérants aux Fautes [STF]
Aitouche, Abdel [Auteur]
Systèmes Tolérants aux Fautes [STF]
Systèmes Tolérants aux Fautes [STF]
Aitouche, Abdel [Auteur]
Systèmes Tolérants aux Fautes [STF]
Titre de la revue :
Renewable Energy
Pagination :
2-15
Éditeur :
Elsevier
Date de publication :
2012-11-27
ISSN :
0960-1481
Mot(s)-clé(s) en anglais :
DFIG
FTC
Parameters uncertainties
Sensor faults
TS fuzzy model
Unknown inputs
FTC
Parameters uncertainties
Sensor faults
TS fuzzy model
Unknown inputs
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
This paper proposes a Fuzzy Dedicated Observers (FDOS) method using a Nonlinear Unknown Input Fuzzy Observer (UIFO) with a Fuzzy Scheduler Fault Tolerant Control (FSFTC) algorithm for fuzzy Takagi-Sugeno (TS) systems subject ...
Lire la suite >This paper proposes a Fuzzy Dedicated Observers (FDOS) method using a Nonlinear Unknown Input Fuzzy Observer (UIFO) with a Fuzzy Scheduler Fault Tolerant Control (FSFTC) algorithm for fuzzy Takagi-Sugeno (TS) systems subject to sensor faults, parametric uncertainties, and time varying unknown inputs. FDOS provide residuals for detection and isolation of sensor faults which can affect a TS model. The TS fuzzy model is adopted for fuzzy modeling of the uncertain nonlinear system and establishing fuzzy state observers. The concept of Parallel Distributed Compensation (PDC) is employed to design FSFTC and fuzzy observers from the TS fuzzy models. TS fuzzy systems are classified into three families based on the input matrices and a FSFTC synthesis procedure is given for each family. In each family, sufficient conditions are derived for robust stabilization, in the sense of Taylor series stability and Lyapunov method, for the TS fuzzy system with parametric uncertainties, sensor faults, and unknown inputs. The sufficient conditions are formulated in the format of Linear Matrix Inequalities (LMIs). The effectiveness of the proposed controller design methodology is finally demonstrated through a wind energy system with Doubly Fed Induction Generators (DFIG) to illustrate the effectiveness of the proposed methodLire moins >
Lire la suite >This paper proposes a Fuzzy Dedicated Observers (FDOS) method using a Nonlinear Unknown Input Fuzzy Observer (UIFO) with a Fuzzy Scheduler Fault Tolerant Control (FSFTC) algorithm for fuzzy Takagi-Sugeno (TS) systems subject to sensor faults, parametric uncertainties, and time varying unknown inputs. FDOS provide residuals for detection and isolation of sensor faults which can affect a TS model. The TS fuzzy model is adopted for fuzzy modeling of the uncertain nonlinear system and establishing fuzzy state observers. The concept of Parallel Distributed Compensation (PDC) is employed to design FSFTC and fuzzy observers from the TS fuzzy models. TS fuzzy systems are classified into three families based on the input matrices and a FSFTC synthesis procedure is given for each family. In each family, sufficient conditions are derived for robust stabilization, in the sense of Taylor series stability and Lyapunov method, for the TS fuzzy system with parametric uncertainties, sensor faults, and unknown inputs. The sufficient conditions are formulated in the format of Linear Matrix Inequalities (LMIs). The effectiveness of the proposed controller design methodology is finally demonstrated through a wind energy system with Doubly Fed Induction Generators (DFIG) to illustrate the effectiveness of the proposed methodLire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :