A Pareto-based GA for Scheduling HPC ...
Document type :
Communication dans un congrès avec actes
Title :
A Pareto-based GA for Scheduling HPC Applications on Distributed Cloud Infrastructures
Author(s) :
Kessaci, Yacine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Melab, Nouredine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Melab, Nouredine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Conference title :
HPCS
City :
Istanbul
Country :
Turquie
Start date of the conference :
2011-07-04
Publication date :
2011-07-04
HAL domain(s) :
Computer Science [cs]/Operations Research [math.OC]
English abstract : [en]
Reducing energy consumption is an increasingly important issue in cloud computing, more specifically when dealing with High Performance Computing (HPC). Minimizing energy consumption can significantly reduce the amount of ...
Show more >Reducing energy consumption is an increasingly important issue in cloud computing, more specifically when dealing with High Performance Computing (HPC). Minimizing energy consumption can significantly reduce the amount of energy bills and then increases the provider's profit. In addition, the reduction of energy decreases greenhouse gas emissions. Therefore, many researches are carried out to develop new methods in order to consume less energy. In this paper, we present a multi-objective genetic algorithm (MO-GA) that optimizes the energy consumption, CO2 emissions and the generated profit of a geographically distributed cloud computing infrastructure. We also propose a greedy heuristic that aims to maximize the number of scheduled applications in order to compare it with the MO-GA. The two approaches have been experimented using realistic workload traces from Feitelson's PWA Parallel Workload Archive. The results show that MO-GA outperforms the greedy heuristic by a significant margin in terms of energy consumption and CO2 emissions. In addition, MO-GA is also proved to be slightly better in terms of profit while scheduling more applications.Show less >
Show more >Reducing energy consumption is an increasingly important issue in cloud computing, more specifically when dealing with High Performance Computing (HPC). Minimizing energy consumption can significantly reduce the amount of energy bills and then increases the provider's profit. In addition, the reduction of energy decreases greenhouse gas emissions. Therefore, many researches are carried out to develop new methods in order to consume less energy. In this paper, we present a multi-objective genetic algorithm (MO-GA) that optimizes the energy consumption, CO2 emissions and the generated profit of a geographically distributed cloud computing infrastructure. We also propose a greedy heuristic that aims to maximize the number of scheduled applications in order to compare it with the MO-GA. The two approaches have been experimented using realistic workload traces from Feitelson's PWA Parallel Workload Archive. The results show that MO-GA outperforms the greedy heuristic by a significant margin in terms of energy consumption and CO2 emissions. In addition, MO-GA is also proved to be slightly better in terms of profit while scheduling more applications.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.inria.fr/inria-00637752/document
- Open access
- Access the document
- https://hal.inria.fr/inria-00637752/document
- Open access
- Access the document
- document
- Open access
- Access the document
- KESSACI_OPTIM_HPCS2011.pdf
- Open access
- Access the document