• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multivariate numerical differentiation
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.cam.2011.07.031
Title :
Multivariate numerical differentiation
Author(s) :
Riachy, Samer [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Laboratoire QUARTZ [QUARTZ ]
Mboup, Mamadou [Auteur]
Centre de Recherche en Sciences et Technologies de l'Information et de la Communication - EA 3804 [CRESTIC]
Non-Asymptotic estimation for online systems [NON-A]
Richard, Jean-Pierre [Auteur]
Systèmes Non Linéaires et à Retards [SyNeR]
Non-Asymptotic estimation for online systems [NON-A]
Journal title :
Journal of Computational and Applied Mathematics
Pages :
1069-1089
Publisher :
Elsevier
Publication date :
2011-10-15
ISSN :
0377-0427
English keyword(s) :
operational calculus
finite impulse response filters
Numerical differentiation
multivariable signals
orthogonal polynomials
inverse problems
least squares
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
We present an innovative method for multivariate numerical differentiation i.e. the estimation of partial derivatives of multidimensional noisy signals. Starting from a local model of the signal consisting of a truncated ...
Show more >
We present an innovative method for multivariate numerical differentiation i.e. the estimation of partial derivatives of multidimensional noisy signals. Starting from a local model of the signal consisting of a truncated Taylor expansion, we express, through adequate differential algebraic manipulations, the desired partial derivative as a function of iterated integrals of the noisy signal. Iterated integrals provide noise filtering. The presented method leads to a family of estimators for each partial derivative of any order. We present a detailed study of some structural properties given in terms of recurrence relations between elements of a same family. These properties are next used to study the performance of the estimators. We show that some differential algebraic manipulations corresponding to a particular family of estimators leads implicitly to an orthogonal projection of the desired derivative in a Jacobi polynomial basis functions, yielding an interpretation in terms of the popular least squares. This interpretation allows one to 1) explain the presence of a spacial delay inherent to the estimators and 2) derive an explicit formula for the delay. We also show how one can devise, by a proper combination of different elementary estimators of a given order derivative, an estimator giving a delay of any prescribed value. The simulation results show that delay-free estimators are sensitive to noise. Robustness with respect to noise can be highly increased by utilizing voluntary-delayed estimators. A numerical implementation scheme is given in the form of finite impulse response digital filters. The effectiveness of our derivative estimators is attested by several numerical simulations.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/inria-00637164/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00637164/document
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.cam.2011.07.031
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.cam.2011.07.031
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00637164/document
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.cam.2011.07.031
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.cam.2011.07.031
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.cam.2011.07.031
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.cam.2011.07.031
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017