• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A unifying framework for seed sensitivity ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1142/S0219720006001977
PMID :
16819802
Title :
A unifying framework for seed sensitivity and its application to subset seeds.
Author(s) :
Kucherov, Gregory [Auteur]
Sequential Learning [SEQUOIA]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Noé, Laurent [Auteur correspondant] refId
Sequential Learning [SEQUOIA]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Roytberg, Mihkail [Auteur]
Institute of Mathematical Problems in Biology [IMPB RAS]
Journal title :
Journal of Bioinformatics and Computational Biology
Pages :
553-69
Publisher :
World Scientific Publishing
Publication date :
2006-04
ISSN :
0219-7200
HAL domain(s) :
Informatique [cs]/Bio-informatique [q-bio.QM]
Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM]
English abstract : [en]
We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem--a set of target alignments, an ...
Show more >
We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem--a set of target alignments, an associated probability distribution, and a seed model--that are specified by distinct finite automata. The approach is then applied to a new concept of subset seeds for which we propose an efficient automaton construction. Experimental results confirm that sensitive subset seeds can be efficiently designed using our approach, and can then be used in similarity search producing better results than ordinary spaced seeds.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00018114v2/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/cs.DS/0601116
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00018114v2/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017