A unifying framework for seed sensitivity ...
Title :
A unifying framework for seed sensitivity and its application to subset seeds.
Author(s) :
Kucherov, Gregory [Auteur]
Sequential Learning [SEQUOIA]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Noé, Laurent [Auteur correspondant]
Sequential Learning [SEQUOIA]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Roytberg, Mihkail [Auteur]
Institute of Mathematical Problems in Biology [IMPB RAS]
Sequential Learning [SEQUOIA]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Noé, Laurent [Auteur correspondant]

Sequential Learning [SEQUOIA]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Roytberg, Mihkail [Auteur]
Institute of Mathematical Problems in Biology [IMPB RAS]
Journal title :
Journal of Bioinformatics and Computational Biology
Pages :
553-69
Publisher :
World Scientific Publishing
Publication date :
2006-04
ISSN :
0219-7200
HAL domain(s) :
Informatique [cs]/Bio-informatique [q-bio.QM]
Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM]
Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM]
English abstract : [en]
We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem--a set of target alignments, an ...
Show more >We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem--a set of target alignments, an associated probability distribution, and a seed model--that are specified by distinct finite automata. The approach is then applied to a new concept of subset seeds for which we propose an efficient automaton construction. Experimental results confirm that sensitive subset seeds can be efficiently designed using our approach, and can then be used in similarity search producing better results than ordinary spaced seeds.Show less >
Show more >We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem--a set of target alignments, an associated probability distribution, and a seed model--that are specified by distinct finite automata. The approach is then applied to a new concept of subset seeds for which we propose an efficient automaton construction. Experimental results confirm that sensitive subset seeds can be efficiently designed using our approach, and can then be used in similarity search producing better results than ordinary spaced seeds.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-00018114v2/document
- Open access
- Access the document
- http://arxiv.org/pdf/cs.DS/0601116
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-00018114v2/document
- Open access
- Access the document