• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimisation de réseaux de neurones profonds: ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Title :
Optimisation de réseaux de neurones profonds: une taxinomie unifiée
Author(s) :
Talbi, El-Ghazali [Auteur] refId
Optimisation de grande taille et calcul large échelle [BONUS]
English keyword(s) :
Metaheuristics
Machine learning
Optimization
Deep neural networks
Hyperparameter optimization
Network architecture search
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
During the last years, research in applying optimization approaches in the automatic design of deep neural networks (DNNs) becomes increasingly popular. Although various appproaches have been proposed, there is a lack of ...
Show more >
During the last years, research in applying optimization approaches in the automatic design of deep neural networks (DNNs) becomes increasingly popular. Although various appproaches have been proposed, there is a lack of a comprehensive survey and taxonomy on this hot research topic. In this paper, we propose a unified way to describe the various optimization algorithms which focus on common and important search components of optimization algorithms: representation, objective function, constraints, initial solution(s) and variation operators. In addition to large scale search space, the problem is characterized by its variable mixed design space, very expensive and multiple blackbox objective functions. Hence, this unified methodology has been extended to advanced optimization approaches such as surrogate-based, multi-objective and parallel optimization.Show less >
Language :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-02570804v2/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-02570804v2/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-02570804v2/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017