A Kernel Multiple Change-point Algorithm ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
A Kernel Multiple Change-point Algorithm via Model Selection
Auteur(s) :
Arlot, Sylvain [Auteur]
Celisse, Alain [Auteur]
Laboratoire Paul Painlevé - UMR 8524
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Harchaoui, Zaid [Auteur]
Celisse, Alain [Auteur]

Laboratoire Paul Painlevé - UMR 8524
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Harchaoui, Zaid [Auteur]
Titre de la revue :
Journal of Machine Learning Research
Nom court de la revue :
JMLR
Numéro :
20
Pagination :
1-56
Éditeur :
Microtome Publishing
Date de publication :
2019-12
ISSN :
1532-4435
Mot(s)-clé(s) :
Change-point detection
Kernel methods
Model selection
Concentration inequality
Concentration in- equality
Kernel methods
Model selection
Concentration inequality
Concentration in- equality
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Résumé en anglais : [en]
We tackle the change-point problem with data belonging to a general set. We build a penalty for choosing the number of change-points in the kernel-based method of Harchaoui and Cappé (2007). This penalty generalizes the ...
Lire la suite >We tackle the change-point problem with data belonging to a general set. We build a penalty for choosing the number of change-points in the kernel-based method of Harchaoui and Cappé (2007). This penalty generalizes the one proposed by Lebarbier (2005) for one-dimensional signals. We prove a non-asymptotic oracle inequality for the proposed method, thanks to a new concentration result for some function of Hilbert-space valued random variables. Experiments on synthetic data illustrate the accuracy of our method, showing that it can detect changes in the whole distribution of data, even when the mean and variance are constant.Lire moins >
Lire la suite >We tackle the change-point problem with data belonging to a general set. We build a penalty for choosing the number of change-points in the kernel-based method of Harchaoui and Cappé (2007). This penalty generalizes the one proposed by Lebarbier (2005) for one-dimensional signals. We prove a non-asymptotic oracle inequality for the proposed method, thanks to a new concentration result for some function of Hilbert-space valued random variables. Experiments on synthetic data illustrate the accuracy of our method, showing that it can detect changes in the whole distribution of data, even when the mean and variance are constant.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CNRS
Université de Lille
Université de Lille
Date de dépôt :
2020-06-08T14:10:41Z
2020-06-09T09:03:47Z
2020-06-09T09:03:47Z
Fichiers
- documen
- Accès libre
- Accéder au document