• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
  • View Item
  •   LillOA Home
  • Liste des unités
  • Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rationale for the design of 3D-printable ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1038/s41598-020-68776-8
PMID :
32678237
Title :
Rationale for the design of 3D-printable bioresorbable tissue-engineering chambers to promote the growth of adipose tissue
Author(s) :
Faglin, Pierre [Auteur]
Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Gradwohl, Marion [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Depoortere, César [Auteur]
Germain, Nicolas [Auteur]
Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Drucbert, Anne-Sophie [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Brun, Stéphanie [Auteur]
Nahon, Claire [Auteur]
Dekiouk, Salim [Auteur]
Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Rech, Alexandre [Auteur]
Groupe de Recherche sur les formes Injectables et les Technologies Associées - ULR 7365 [GRITA]
Azaroual, Nathalie [Auteur]
Groupe de Recherche sur les formes Injectables et les Technologies Associées - ULR 7365 [GRITA]
Maboudou, Patrice [Auteur]
Payen, Julien [Auteur]
Danzé, Pierre-Marie [Auteur]
Guerreschi, Pierre [Auteur correspondant] refId
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Marchetti, Philippe [Auteur correspondant] refId
Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Journal title :
SCIENTIFIC REPORTS
Pages :
11779
Publisher :
Nature Publishing Group
Publication date :
2020-07-16
ISSN :
2045-2322
HAL domain(s) :
Sciences du Vivant [q-bio]/Biologie cellulaire
English abstract : [en]
Tissue engineering chambers (TECs) bring great hope in regenerative medicine as they allow the growth of adipose tissue for soft tissue reconstruction. To date, a wide range of TEC prototypes are available with different ...
Show more >
Tissue engineering chambers (TECs) bring great hope in regenerative medicine as they allow the growth of adipose tissue for soft tissue reconstruction. To date, a wide range of TEC prototypes are available with different conceptions and volumes. Here, we addressed the influence of TEC design on fat flap growth in vivo as well as the possibility of using bioresorbable polymers for optimum TEC conception. In rats, adipose tissue growth is quicker under perforated TEC printed in polylactic acid than non-perforated ones (growth difference 3 to 5 times greater within 90 days). Histological analysis reveals the presence of viable adipocytes under a moderate (less than 15% of the flap volume) fibrous capsule infiltrated with CD68+ inflammatory cells. CD31-positive vascular cells are more abundant at the peripheral zone than in the central part of the fat flap. Cells in the TEC exhibit a specific metabolic profile of functional adipocytes identified by 1H-NMR. Regardless of the percentage of TEC porosity, the presence of a flat base allowed the growth of a larger fat volume (p < 0.05) as evidenced by MRI images. In pigs, bioresorbable TEC in poly[1,4-dioxane-2,5-dione] (polyglycolic acid) PURASORB PGS allows fat flap growth up to 75 000 mm3 at day 90, (corresponding to more than a 140% volume increase) while at the same time the TEC is largely resorbed. No systemic inflammatory response was observed. Histologically, the expansion of adipose tissue resulted mainly from an increase in the number of adipocytes rather than cell hypertrophy. Adipose tissue is surrounded by perfused blood vessels and encased in a thin fibrous connective tissue containing patches of CD163+ inflammatory cells. Our large preclinical evaluation defined the appropriate design for 3D-printable bioresorbable TECs and thus opens perspectives for further clinical applications.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
Source :
Harvested from HAL
Files
Thumbnail
  • https://www.hal.inserm.fr/inserm-02939267/document
  • Open access
  • Access the document
Thumbnail
  • https://www.hal.inserm.fr/inserm-02939267/document
  • Open access
  • Access the document
Thumbnail
  • https://www.hal.inserm.fr/inserm-02939267/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017