Reversible anionic redox chemistry in ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
Author(s) :
Sathiya, M. [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Rousse, G. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Ramesha, K. [Auteur]
Laisa, C. P. [Auteur]
Vezin, Herve [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Sougrati, M. T. [Auteur]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM ICMMM]
Doublet, M-L. [Auteur]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM ICMMM]
Foix, D. [Auteur]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Gonbeau, D. [Auteur]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Walker, W. [Auteur]
Prakash, A. S. [Auteur]
Ben Hassine, M. [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Dupont, L. [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Tarascon, J-M. [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Rousse, G. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Ramesha, K. [Auteur]
Laisa, C. P. [Auteur]
Vezin, Herve [Auteur]

Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Sougrati, M. T. [Auteur]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM ICMMM]
Doublet, M-L. [Auteur]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM ICMMM]
Foix, D. [Auteur]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Gonbeau, D. [Auteur]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Walker, W. [Auteur]
Prakash, A. S. [Auteur]
Ben Hassine, M. [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Dupont, L. [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Tarascon, J-M. [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Journal title :
Nature Materials
Abbreviated title :
Nature Mater
Volume number :
12
Pages :
827-835
Publisher :
Springer Science and Business Media LLC
Publication date :
2013-07-14
ISSN :
1476-4660
English keyword(s) :
Batteries
Electrochemistry
Electrochemistry
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are ...
Show more >Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion–deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1−x−y−z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1−ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g−1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2−→O22−) reversible redox processes, owing to the d–s p hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.Show less >
Show more >Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion–deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1−x−y−z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1−ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g−1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2−→O22−) reversible redox processes, owing to the d–s p hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Research team(s) :
Propriétés magnéto structurales des matériaux (PMSM)
Submission date :
2021-06-17T14:56:18Z
2021-09-23T12:37:02Z
2021-09-23T12:37:02Z