Nutritionally induced tanycytic plasticity ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Nutritionally induced tanycytic plasticity in the hypothalamus of adult ewes
Author(s) :
Prezotto, L. D. [Auteur]
Thorson, J. F. [Auteur]
Prevot, V. [Auteur]
Redmer, D. A. [Auteur]
Grazul-Bilska, A. T. [Auteur]
Thorson, J. F. [Auteur]
Prevot, V. [Auteur]
Redmer, D. A. [Auteur]
Grazul-Bilska, A. T. [Auteur]
Journal title :
Domestic animal endocrinology
Abbreviated title :
Domest. Anim. Endocrinol.
Volume number :
72
Pages :
106438
Publication date :
2020-03-26
ISSN :
1879-0054
Keyword(s) :
Nutrition
Hypothalamus
Ewe
Blood-brain barrier
Tanycyte
Proopiomelanocortin
Hypothalamus
Ewe
Blood-brain barrier
Tanycyte
Proopiomelanocortin
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
The blood-brain barrier regulates the transport of molecules that convey global energetic status to the feeding circuitry within the hypothalamus. Capillaries within the median eminence (ME) and tight junctions between ...
Show more >The blood-brain barrier regulates the transport of molecules that convey global energetic status to the feeding circuitry within the hypothalamus. Capillaries within the median eminence (ME) and tight junctions between tanycytes lining the third ventricle (3V) are critical components of this barrier. Herein, we tested the hypothesis that altering the plane of nutrition results in the structural reorganization of tanycytes, tight junctions, and capillary structure within the medial basal hypothalamus. Proopiomelanocortin (POMC) neuronal content within the arcuate nucleus of the hypothalamus (ARC) was also assessed to test whether reduced nutritional status improved access of nutrients to the ARC, while decreasing the access of nutrients of overfed animals. Multiparous, nongestating ewes were stratified by weight and randomly assigned to dietary treatments offered for 75 d: 200% of dietary recommendations (overfed), 100% of dietary recommendations (control), or 60% of dietary recommendations (underfed). The number of POMC-expressing neurons within the ARC was increased (P ≤ 0.002) in underfed ewes. Overfeeding increased (P ≤ 0.01) tanycyte cellular process penetration and density compared with control and underfeeding as assessed using vimentin immunostaining. Immunostaining of tight junctions along the wall of the 3V did not differ (P = 0.32) between treatments. No differences were observed in capillary density (P = 0.21) or classification (P ≥ 0.47) within the ME. These results implicate that changes within the satiety center and morphology of tanycytes within the ARC occur as an adaptation to nutrient availability.Show less >
Show more >The blood-brain barrier regulates the transport of molecules that convey global energetic status to the feeding circuitry within the hypothalamus. Capillaries within the median eminence (ME) and tight junctions between tanycytes lining the third ventricle (3V) are critical components of this barrier. Herein, we tested the hypothesis that altering the plane of nutrition results in the structural reorganization of tanycytes, tight junctions, and capillary structure within the medial basal hypothalamus. Proopiomelanocortin (POMC) neuronal content within the arcuate nucleus of the hypothalamus (ARC) was also assessed to test whether reduced nutritional status improved access of nutrients to the ARC, while decreasing the access of nutrients of overfed animals. Multiparous, nongestating ewes were stratified by weight and randomly assigned to dietary treatments offered for 75 d: 200% of dietary recommendations (overfed), 100% of dietary recommendations (control), or 60% of dietary recommendations (underfed). The number of POMC-expressing neurons within the ARC was increased (P ≤ 0.002) in underfed ewes. Overfeeding increased (P ≤ 0.01) tanycyte cellular process penetration and density compared with control and underfeeding as assessed using vimentin immunostaining. Immunostaining of tight junctions along the wall of the 3V did not differ (P = 0.32) between treatments. No differences were observed in capillary density (P = 0.21) or classification (P ≥ 0.47) within the ME. These results implicate that changes within the satiety center and morphology of tanycytes within the ARC occur as an adaptation to nutrient availability.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
CHU Lille
Inserm
Université de Lille
Inserm
Université de Lille
Collections :
Research team(s) :
Développement et plasticité du cerveau neuro-endocrine
Submission date :
2021-06-23T13:46:12Z