UWB radar recognition system based on HOS and SVMs
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
UWB radar recognition system based on HOS and SVMs
Author(s) :
Sadli, Rahmad [Auteur correspondant]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratoire Électronique Ondes et Signaux pour les Transports [IFSTTAR/LEOST]
Tatkeu, Charles [Auteur]
Laboratoire Électronique Ondes et Signaux pour les Transports [IFSTTAR/LEOST]
Hamidoun, Khadija [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Hillali, Yassin [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rivenq, Atika [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
INSA Institut National des Sciences Appliquées Hauts-de-France [INSA Hauts-De-France]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratoire Électronique Ondes et Signaux pour les Transports [IFSTTAR/LEOST]
Tatkeu, Charles [Auteur]
Laboratoire Électronique Ondes et Signaux pour les Transports [IFSTTAR/LEOST]
Hamidoun, Khadija [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Hillali, Yassin [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rivenq, Atika [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
INSA Institut National des Sciences Appliquées Hauts-de-France [INSA Hauts-De-France]
Journal title :
IET Radar Sonar and Navigation
Pages :
1137-1145
Publisher :
Institution of Engineering and Technology
Publication date :
2018-10
ISSN :
1751-8784
English keyword(s) :
Advanced Automotive Sensing – Towards Car Autonomy
radar target recognition
radar detection
ultra wideband radar
feature extraction
support vector machines
road safety
object detection
image recognition
radar target recognition
radar detection
ultra wideband radar
feature extraction
support vector machines
road safety
object detection
image recognition
HAL domain(s) :
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
English abstract : [en]
This study proposes an original ultra-wideband short-range radar (UWB-SRR) recognition system based on higher-order statistics (HOS) and support vector machines (SVMs). The main purpose of this work is to improve the road ...
Show more >This study proposes an original ultra-wideband short-range radar (UWB-SRR) recognition system based on higher-order statistics (HOS) and support vector machines (SVMs). The main purpose of this work is to improve the road safety by implementing these techniques for detection and recognition of the uncovered road users such as pedestrians and cyclists. The combination of HOS and cell-averaging constant false alarm rate (CA-CFAR) radar detector has been proposed and investigated. The results show that a combination of HOS and CA-CFAR promises a good performance for UWB radar detector. The authors have also evaluated the performance of SVM-based target recognition system using normalised radar signature as input features. A total of 1000 signatures have been extracted for each class including pedestrian, cyclist, and car, where 50% of them have been used for the training data and the rest for the validation data. The results show that the SVM gives a good performance for the proposed system, where the recognition rates are up to 96.23, 95.25 and 97.23% for the cyclist, pedestrian and car. In the real testing performance using their scenarios, the system has successfully identified 92.77% of the right cyclist, 90.82% of the right pedestrian and 90.73% of the right car.Show less >
Show more >This study proposes an original ultra-wideband short-range radar (UWB-SRR) recognition system based on higher-order statistics (HOS) and support vector machines (SVMs). The main purpose of this work is to improve the road safety by implementing these techniques for detection and recognition of the uncovered road users such as pedestrians and cyclists. The combination of HOS and cell-averaging constant false alarm rate (CA-CFAR) radar detector has been proposed and investigated. The results show that a combination of HOS and CA-CFAR promises a good performance for UWB radar detector. The authors have also evaluated the performance of SVM-based target recognition system using normalised radar signature as input features. A total of 1000 signatures have been extracted for each class including pedestrian, cyclist, and car, where 50% of them have been used for the training data and the rest for the validation data. The results show that the SVM gives a good performance for the proposed system, where the recognition rates are up to 96.23, 95.25 and 97.23% for the cyclist, pedestrian and car. In the real testing performance using their scenarios, the system has successfully identified 92.77% of the right cyclist, 90.82% of the right pedestrian and 90.73% of the right car.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Comment :
JIF=2.015
Source :
Files
- document
- Open access
- Access the document
- IET%20Radar%20Sonar%20%20%20Navi%20-%202018%20-%20Sadli%20-%20UWB%20radar%20recognition%20system%20based%20on%20HOS%20and%20SVMs.pdf
- Open access
- Access the document