Conduction Band Fine Structure in Colloidal ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Conduction Band Fine Structure in Colloidal HgTe Quantum Dots
Author(s) :
Hudson, Margaret [Auteur]
James Franck Institute
Chen, Menglu [Auteur]
James Franck Institute
Kamysbayev, Vladislav [Auteur]
James Franck Institute
Janke, Eric [Auteur]
James Franck Institute
Lan, Xinzheng [Auteur]
James Franck Institute
Allan, Guy [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Delerue, Christophe [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lee, Byeongdu [Auteur]
Advanced Photon Source [ANL] [APS]
Guyot-Sionnest, Philippe [Auteur]
James Franck Institute
Talapin, Dmitri [Auteur correspondant]
University of Chicago
James Franck Institute
Chen, Menglu [Auteur]
James Franck Institute
Kamysbayev, Vladislav [Auteur]
James Franck Institute
Janke, Eric [Auteur]
James Franck Institute
Lan, Xinzheng [Auteur]
James Franck Institute
Allan, Guy [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Delerue, Christophe [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lee, Byeongdu [Auteur]
Advanced Photon Source [ANL] [APS]
Guyot-Sionnest, Philippe [Auteur]
James Franck Institute
Talapin, Dmitri [Auteur correspondant]
University of Chicago
Journal title :
ACS Nano
Pages :
9397-9404
Publisher :
American Chemical Society
Publication date :
2018-08-22
ISSN :
1936-0851
English keyword(s) :
colloidal quantum dots
doping
infrared
electronic structure
spectroelectrochemistry
doping
infrared
electronic structure
spectroelectrochemistry
HAL domain(s) :
Physique [physics]
Physique [physics]/Matière Condensée [cond-mat]
Physique [physics]/Matière Condensée [cond-mat]
English abstract : [en]
AbstractHgTe colloidal quantum dots (QDs) are of interest because quantum confinement of semimetallic bulk HgTe allows one to synthetically control the bandgap throughout the infrared. Here, we synthesize highly monodisperse ...
Show more >AbstractHgTe colloidal quantum dots (QDs) are of interest because quantum confinement of semimetallic bulk HgTe allows one to synthetically control the bandgap throughout the infrared. Here, we synthesize highly monodisperse HgTe QDs and tune their doping both chemically and electrochemically. The monodispersity of the QDs was evaluated using small-angle X-ray scattering (SAXS) and suggests a diameter distribution of similar to 10% across multiple batches of different sizes. Electron-doped HgTe QDs display an intraband absorbance and bleaching of the first two excitonic features. We see splitting of the intraband peaks corresponding to electronic transitions from the occupied 1Se state to a series of nondegenerate 1Pe states. Spectroelectrochemical studies reveal that the degree of splitting and relative intensity of the intraband features remain constant across doping levels up to two electrons per QD. Theoretical modeling suggests that the splitting of the 1Pe level arises from spin-orbit coupling and reduced QD symmetry. As a result, the fine structure of the intraband transitions is observed in the ensemble studies due to the size uniformity of the as-synthesized QDs and strong spin-orbit coupling inherent to HgTe.Show less >
Show more >AbstractHgTe colloidal quantum dots (QDs) are of interest because quantum confinement of semimetallic bulk HgTe allows one to synthetically control the bandgap throughout the infrared. Here, we synthesize highly monodisperse HgTe QDs and tune their doping both chemically and electrochemically. The monodispersity of the QDs was evaluated using small-angle X-ray scattering (SAXS) and suggests a diameter distribution of similar to 10% across multiple batches of different sizes. Electron-doped HgTe QDs display an intraband absorbance and bleaching of the first two excitonic features. We see splitting of the intraband peaks corresponding to electronic transitions from the occupied 1Se state to a series of nondegenerate 1Pe states. Spectroelectrochemical studies reveal that the degree of splitting and relative intensity of the intraband features remain constant across doping levels up to two electrons per QD. Theoretical modeling suggests that the splitting of the 1Pe level arises from spin-orbit coupling and reduced QD symmetry. As a result, the fine structure of the intraband transitions is observed in the ensemble studies due to the size uniformity of the as-synthesized QDs and strong spin-orbit coupling inherent to HgTe.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- https://www.osti.gov/biblio/1482116
- Open access
- Access the document
- https://www.osti.gov/biblio/1482116
- Open access
- Access the document
- https://www.osti.gov/biblio/1482116
- Open access
- Access the document
- 1482116
- Open access
- Access the document
- document
- Open access
- Access the document
- accepted%20vers%20Hudson.pdf
- Open access
- Access the document