Molecular signature of polyoxometalates ...
Document type :
Article dans une revue scientifique
DOI :
Title :
Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions
Author(s) :
Laurans, Maxime [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Dalla Francesca, Kevin [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Volatron, Florence [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Izzet, Guillaume [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Guérin, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vuillaume, Dominique [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lenfant, Stéphane [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Proust, Anna [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Institut Parisien de Chimie Moléculaire [IPCM]
Dalla Francesca, Kevin [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Volatron, Florence [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Izzet, Guillaume [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Guérin, David [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vuillaume, Dominique [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lenfant, Stéphane [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Proust, Anna [Auteur]
Institut Parisien de Chimie Moléculaire [IPCM]
Journal title :
Nanoscale
Pages :
17156-17165
Publisher :
Royal Society of Chemistry
Publication date :
2018
ISSN :
2040-3364
HAL domain(s) :
Chimie/Matériaux
Chimie/Chimie inorganique
Chimie/Chimie inorganique
English abstract : [en]
Polyoxometalates (POMs) are unconventional electro-active molecules with a great potential for applications in molecular memories, providing efficient processing steps onto electrodes are available. The synthesis of the ...
Show more >Polyoxometalates (POMs) are unconventional electro-active molecules with a great potential for applications in molecular memories, providing efficient processing steps onto electrodes are available. The synthesis of the organic–inorganic polyoxometalate hybrids [PM11O39{Sn(C6H4)C[triple bond, length as m-dash]C(C6H4)N2}]3− (M = Mo, W) endowed with a remote diazonium function is reported together with their covalent immobilization onto hydrogenated n-Si(100) substrates. Electron transport measurements through the resulting densely-packed monolayers contacted with a mercury drop as a top electrode confirms their homogeneity. Adjustment of the current–voltage curves with the Simmon's equation gives a mean tunnel energy barrier ΦPOM of 1.8 eV and 1.6 eV, for the Silicon–Molecules–Metal (SMM) junctions based on the polyoxotungstates (M = W) and polyoxomolybdates (M = Mo), respectively. This follows the trend observed in the electrochemical properties of POMs in solution, the polyoxomolybdates being easier to reduce than the polyoxotungstates, in agreement with lowest unoccupied molecular orbitals (LUMOs) of lower energy. The molecular signature of the POMs is thus clearly identifiable in the solid-state electrical properties and the unmatched diversity of POM molecular and electronic structures should offer a great modularity.Show less >
Show more >Polyoxometalates (POMs) are unconventional electro-active molecules with a great potential for applications in molecular memories, providing efficient processing steps onto electrodes are available. The synthesis of the organic–inorganic polyoxometalate hybrids [PM11O39{Sn(C6H4)C[triple bond, length as m-dash]C(C6H4)N2}]3− (M = Mo, W) endowed with a remote diazonium function is reported together with their covalent immobilization onto hydrogenated n-Si(100) substrates. Electron transport measurements through the resulting densely-packed monolayers contacted with a mercury drop as a top electrode confirms their homogeneity. Adjustment of the current–voltage curves with the Simmon's equation gives a mean tunnel energy barrier ΦPOM of 1.8 eV and 1.6 eV, for the Silicon–Molecules–Metal (SMM) junctions based on the polyoxotungstates (M = W) and polyoxomolybdates (M = Mo), respectively. This follows the trend observed in the electrochemical properties of POMs in solution, the polyoxomolybdates being easier to reduce than the polyoxotungstates, in agreement with lowest unoccupied molecular orbitals (LUMOs) of lower energy. The molecular signature of the POMs is thus clearly identifiable in the solid-state electrical properties and the unmatched diversity of POM molecular and electronic structures should offer a great modularity.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.sorbonne-universite.fr/hal-01981040/document
- Open access
- Access the document
- http://arxiv.org/pdf/1809.00708
- Open access
- Access the document
- https://hal.sorbonne-universite.fr/hal-01981040/document
- Open access
- Access the document
- https://hal.sorbonne-universite.fr/hal-01981040/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Nanoscale1HAL.pdf
- Open access
- Access the document
- 1809.00708
- Open access
- Access the document