Nonlinear secondary noise sources for ...
Document type :
Article dans une revue scientifique
Title :
Nonlinear secondary noise sources for passive defect detection using ultrasound sensors
Author(s) :
Chehami, Lynda [Auteur]
Institut Langevin - Ondes et Images (UMR7587) [IL]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Transduction, Propagation et Imagerie Acoustique - IEMN [TPIA - IEMN]
Moulin, Emmanuel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Transduction, Propagation et Imagerie Acoustique - IEMN [TPIA - IEMN]
de Rosny, Julien [Auteur]
Institut Langevin - Ondes et Images (UMR7587) [IL]
Prada, Claire [Auteur]
Institut Langevin - Ondes et Images (UMR7587) [IL]
Chatelet, Eric [Auteur]
Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] [LaMCoS]
Lacerra, Giovanna [Auteur]
Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] [LaMCoS]
Gryllias, Konstantinos [Auteur]
Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] [LaMCoS]
Catholic University of Leuven - Katholieke Universiteit Leuven [KU Leuven]
Massi, Francesco [Auteur]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Institut Langevin - Ondes et Images (UMR7587) [IL]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Transduction, Propagation et Imagerie Acoustique - IEMN [TPIA - IEMN]
Moulin, Emmanuel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Transduction, Propagation et Imagerie Acoustique - IEMN [TPIA - IEMN]
de Rosny, Julien [Auteur]
Institut Langevin - Ondes et Images (UMR7587) [IL]
Prada, Claire [Auteur]
Institut Langevin - Ondes et Images (UMR7587) [IL]
Chatelet, Eric [Auteur]
Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] [LaMCoS]
Lacerra, Giovanna [Auteur]
Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] [LaMCoS]
Gryllias, Konstantinos [Auteur]
Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] [LaMCoS]
Catholic University of Leuven - Katholieke Universiteit Leuven [KU Leuven]
Massi, Francesco [Auteur]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Journal title :
Journal of Sound and Vibration
Pages :
283 - 294
Publisher :
Elsevier
Publication date :
2017-01-06
ISSN :
0022-460X
English keyword(s) :
Friction-induced vibrations
Noise correlation
Defect localisation
Noise correlation
Defect localisation
HAL domain(s) :
Physique [physics]/Mécanique [physics]/Vibrations [physics.class-ph]
English abstract : [en]
This paper introduces the concept of secondary noise sources for passive defect detection and localization in structures. The proposed solution allows for the exploitation of the principle of Green's function reconstruction ...
Show more >This paper introduces the concept of secondary noise sources for passive defect detection and localization in structures. The proposed solution allows for the exploitation of the principle of Green's function reconstruction from noise correlation, even in the absence of an adequate ambient noise. The main principle is to convert a part of low-frequency modal vibrations into high-frequency noise by exploiting the frictional contact nonlinearities. The device consists of a mass-spring resonator coupled to a flexible beam by a rough frictional interface. The extremity of the beam, attached to the surface of a plate, excites efficiently flexural waves in the plate up to 30 kHz when the primary resonator vibrates around its natural frequency, i.e. a few dozens Hz. A set of such devices is placed at random positions on the plate surface, and low-frequency excitation is provided by a shaker. The generated high-frequency noise is recorded by an array of eight piezoelectric transducers attached to the plate. A differential correlation matrix is constructed by subtracting correlation functions computed from noise signals at each sensor pairs, before and after the introduction of a local heterogeneity mimicking a defect. A simple array processing then allows for the detection and estimation of the defect location from this differential correlation matrix. Beyond the successful proof of concept, influence of experimental parameters, such as the number of secondary sources or the variability of the position of the shaker application point, is also investigated.Show less >
Show more >This paper introduces the concept of secondary noise sources for passive defect detection and localization in structures. The proposed solution allows for the exploitation of the principle of Green's function reconstruction from noise correlation, even in the absence of an adequate ambient noise. The main principle is to convert a part of low-frequency modal vibrations into high-frequency noise by exploiting the frictional contact nonlinearities. The device consists of a mass-spring resonator coupled to a flexible beam by a rough frictional interface. The extremity of the beam, attached to the surface of a plate, excites efficiently flexural waves in the plate up to 30 kHz when the primary resonator vibrates around its natural frequency, i.e. a few dozens Hz. A set of such devices is placed at random positions on the plate surface, and low-frequency excitation is provided by a shaker. The generated high-frequency noise is recorded by an array of eight piezoelectric transducers attached to the plate. A differential correlation matrix is constructed by subtracting correlation functions computed from noise signals at each sensor pairs, before and after the introduction of a local heterogeneity mimicking a defect. A simple array processing then allows for the detection and estimation of the defect location from this differential correlation matrix. Beyond the successful proof of concept, influence of experimental parameters, such as the number of secondary sources or the variability of the position of the shaker application point, is also investigated.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Comment :
JIF=2.618
Source :