Ordered choice probabilities in random ...
Type de document :
Pré-publication ou Document de travail
Titre :
Ordered choice probabilities in random utility models
Auteur(s) :
de Palma, André [Auteur]
Département d'Économie de l'École Polytechnique [X-DEP-ECO]
École normale supérieure - Cachan [ENS Cachan]
Kilani, Karim [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratoire interdisciplinaire de recherche en sciences de l'action [LIRSA]
Département d'Économie de l'École Polytechnique [X-DEP-ECO]
École normale supérieure - Cachan [ENS Cachan]
Kilani, Karim [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratoire interdisciplinaire de recherche en sciences de l'action [LIRSA]
Mot(s)-clé(s) en anglais :
Random utility models
Generalized Roy's identity
Logit
Ordered utilities
Order statistics
Probit
Generalized Roy's identity
Logit
Ordered utilities
Order statistics
Probit
Discipline(s) HAL :
Sciences de l'Homme et Société/Economies et finances
Résumé en anglais : [en]
We prove a general identity which states that any element of a tuple (ordered set) can be obtained as an alternating binomial weighted sum of rst elements of some sub-tuples. The identity is then applied within the random ...
Lire la suite >We prove a general identity which states that any element of a tuple (ordered set) can be obtained as an alternating binomial weighted sum of rst elements of some sub-tuples. The identity is then applied within the random utility models framework where any alternative's ordered choice probability (the probability that it has a given rank) is expressed with respect to standard best choice probabilities. The logit and the logsum formulas are extended to their ordered choice counterparts. In a symmetric case, we compare for the probit and the logit, the surplus loss due to the withdrawal of a product with the damage due to the loss of a rank.Lire moins >
Lire la suite >We prove a general identity which states that any element of a tuple (ordered set) can be obtained as an alternating binomial weighted sum of rst elements of some sub-tuples. The identity is then applied within the random utility models framework where any alternative's ordered choice probability (the probability that it has a given rank) is expressed with respect to standard best choice probabilities. The logit and the logsum formulas are extended to their ordered choice counterparts. In a symmetric case, we compare for the probit and the logit, the surplus loss due to the withdrawal of a product with the damage due to the loss of a rank.Lire moins >
Langue :
Anglais
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01130603/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01130603/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01130603/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- cahier%202015-04.pdf
- Accès libre
- Accéder au document