Prediction of robust two-dimensional ...
Document type :
Article dans une revue scientifique
Title :
Prediction of robust two-dimensional topological insulators based on Ge/Si nanotechnology
Author(s) :
Delerue, Christophe [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Pages :
075424, 8 pages
Publisher :
American Physical Society
Publication date :
2014-08-22
ISSN :
1098-0121
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Atomistic tight-binding calculations show that two-dimensional topological insulators can be obtained using Ge or Ge/Si nanotechnologies. The strong quantum confinement is used to open energy gaps in the valence band of ...
Show more >Atomistic tight-binding calculations show that two-dimensional topological insulators can be obtained using Ge or Ge/Si nanotechnologies. The strong quantum confinement is used to open energy gaps in the valence band of artificial graphene made of Ge. These gaps are topologically nontrivial due to the combination of the honeycomb nanogeometry and the spin-orbit coupling. Gap widths above 10 meV can be obtained using realistic structures. With light effective masses, a strong spin-orbit coupling, and a high compatibility with microelectronic processes, Ge is an excellent substrate for the fabrication of spintronic devices based on topological insulator states.Show less >
Show more >Atomistic tight-binding calculations show that two-dimensional topological insulators can be obtained using Ge or Ge/Si nanotechnologies. The strong quantum confinement is used to open energy gaps in the valence band of artificial graphene made of Ge. These gaps are topologically nontrivial due to the combination of the honeycomb nanogeometry and the spin-orbit coupling. Gap widths above 10 meV can be obtained using realistic structures. With light effective masses, a strong spin-orbit coupling, and a high compatibility with microelectronic processes, Ge is an excellent substrate for the fabrication of spintronic devices based on topological insulator states.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01058153/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01058153/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Delerue_2014_PhysRevB.90.075424.pdf
- Open access
- Access the document