• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Demonstrating kHz frequency actuation for ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1002/adfm.201400373
Title :
Demonstrating kHz frequency actuation for conducting polymer microactuators
Author(s) :
Maziz, Ali [Auteur]
Laboratoire de Physico-chimie des Polymères et des Interfaces [LPPI]
Plesse, Cedric [Auteur]
Laboratoire de Physico-chimie des Polymères et des Interfaces [LPPI]
Soyer, Caroline [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Chevrot, Claude [Auteur]
Laboratoire de Physico-chimie des Polymères et des Interfaces [LPPI]
Teyssié, Dominique [Auteur]
Laboratoire de Physico-chimie des Polymères et des Interfaces [LPPI]
Cattan, Eric [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vidal, Frederic [Auteur]
Laboratoire de Physico-chimie des Polymères et des Interfaces [LPPI]
Journal title :
Advanced Functional Materials
Pages :
4851-4859
Publisher :
Wiley
Publication date :
2014
ISSN :
1616-301X
English abstract : [en]
This paper reports results on ionic EAP micromuscles converting electrical into micromechanical response in open-air. Translation of small ion motion into large deformation in bending microactuator and its amplifi cation ...
Show more >
This paper reports results on ionic EAP micromuscles converting electrical into micromechanical response in open-air. Translation of small ion motion into large deformation in bending microactuator and its amplifi cation by fundamental resonant frequency are used as tools to demonstrate that small ion vibrations can still occur at frequency as high as 1000 Hz in electrochemical devices. These results are achieved through the microfabrication of ultrathin conducting polymer microactuators. First, the synthesis of robust interpenetrating polymer networks (IPNs) is combined with a spincoating technique in order to tune and drastically reduce the thickness of conducting IPN microactuators using a so-called "trilayer" confi guration. Patterning of electroactive materials as thin as 6 μm is demonstrated with existing technologies, such as standard photolithography and dry etching. Electrochemomechanical characterizations of the micrometer sized beams are presented and compared to existing model. Moreover, thanks to downscaling, large displacements under low voltage stimulation (±4 V) are reported at a frequency as high as 930 Hz corresponding to the fundamental eigenfrequency of the microbeam. Finally, conducting IPN microactuators are then presenting unprecedented combination of softness, low driving voltage, large displacement, and fast response speed, which are the keys for further development to develop new MEMS.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Collections :
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Source :
Harvested from HAL
Files
Thumbnail
  • https://api.istex.fr/ark:/67375/WNG-G6DQ7C4N-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • https://api.istex.fr/ark:/67375/WNG-G6DQ7C4N-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • https://api.istex.fr/ark:/67375/WNG-G6DQ7C4N-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • https://api.istex.fr/ark:/67375/WNG-G6DQ7C4N-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • https://api.istex.fr/ark:/67375/WNG-G6DQ7C4N-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • https://api.istex.fr/ark:/67375/WNG-G6DQ7C4N-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • fulltext.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017