Phosphorus-hyperdoped Si nanocrystals : a ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Phosphorus-hyperdoped Si nanocrystals : a model for localized surface plasmon resonance
Author(s) :
Pi, X. [Auteur]
Delerue, Christophe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Delerue, Christophe [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Conference title :
European Materials Research Society Spring Meeting, E-MRS Spring 2014, Symposium X - Materials research for group IV semiconductors : growth, characterization and technological developments
City :
Lille
Country :
France
Start date of the conference :
2014
English abstract : [en]
It has been recently realized that semiconductor nanocrystals can be doped with point defects or impurities up to a very high level, sometimes above the bulk solubility limit. In parallel, hyperdoping has also emerged as ...
Show more >It has been recently realized that semiconductor nanocrystals can be doped with point defects or impurities up to a very high level, sometimes above the bulk solubility limit. In parallel, hyperdoping has also emerged as a promising means to change the electrical and optical properties of Si. In the present work, we show theoretically that Localized Surface Plasmon Resonance (LSPR) may occur in P-hyperdoped Si nanocrystals, which could greatly contribute to the development of Si based plasmonics [1]. Considering a model system using self-consistent tight binding calculations, we study how the sub-bandgap optical absorption changes with nanocrystal size and doping concentration and we propose a simple model which explains the results. We determine the conditions required to observe LSPR in hyperdoped semiconductor nanocrystals. We explain why the introduction of deep defects in the nanocrystals does not induce LSPR while the introduction of hydrogenic impurities does. [1] X. Pi and C. Delerue, Phys. Rev. Lett. 111, 177402 (2013).Show less >
Show more >It has been recently realized that semiconductor nanocrystals can be doped with point defects or impurities up to a very high level, sometimes above the bulk solubility limit. In parallel, hyperdoping has also emerged as a promising means to change the electrical and optical properties of Si. In the present work, we show theoretically that Localized Surface Plasmon Resonance (LSPR) may occur in P-hyperdoped Si nanocrystals, which could greatly contribute to the development of Si based plasmonics [1]. Considering a model system using self-consistent tight binding calculations, we study how the sub-bandgap optical absorption changes with nanocrystal size and doping concentration and we propose a simple model which explains the results. We determine the conditions required to observe LSPR in hyperdoped semiconductor nanocrystals. We explain why the introduction of deep defects in the nanocrystals does not induce LSPR while the introduction of hydrogenic impurities does. [1] X. Pi and C. Delerue, Phys. Rev. Lett. 111, 177402 (2013).Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Source :