Electrolyte-gated organic/nanoparticles ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Electrolyte-gated organic/nanoparticles synapstor (synapse-transistor) for biocompatible synapse prosthesis
Author(s) :
Desbief, Simon [Auteur]
Kyndiah, Adrica [Auteur]
Murgia, Mauro [Auteur]
Cramer, Tobais [Auteur]
Biscarini, Fabio [Auteur]
Guérin, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lenfant, Stéphane [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Alibart, F. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vuillaume, Dominique [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Kyndiah, Adrica [Auteur]
Murgia, Mauro [Auteur]
Cramer, Tobais [Auteur]
Biscarini, Fabio [Auteur]
Guérin, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lenfant, Stéphane [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Alibart, F. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vuillaume, Dominique [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Conference title :
Materials Research Society Spring Meeting, MRS Spring 2014, Symposium Z - Bioelectronics - Materials, Processes and Applications, Symposium AA - Advanced Multifunctional Biomaterials for Neuroprosthetic Interfaces
City :
San Francisco, CA
Country :
Etats-Unis d'Amérique
Start date of the conference :
2014
English abstract : [en]
We have recently demonstrated how we can use charge trapping/detrapping in an array of gold nanoparticules (NPs) at the SiO2/pentacene interface to design a SYNAPSTOR (synapse transistor) mimicking the dynamic plasticity ...
Show more >We have recently demonstrated how we can use charge trapping/detrapping in an array of gold nanoparticules (NPs) at the SiO2/pentacene interface to design a SYNAPSTOR (synapse transistor) mimicking the dynamic plasticity of a biological synapse. This device (memristor-like) mimics short-term plasticity (STP) [1] and temporal correlation plasticity (STDP, spike-timing dependent plasticity) [2], two "functions" at the basis of learning processes. A compact model was developed [3], and we demonstrated an associative memory, which can be trained to present a pavlovian response [4]. Here we develop an electrolyte-gated version of this device for biocompatible applications. We report on a detailed understanding of the electrical behavior of these synapstors in physiologically relevant conditions. We compare synapstors operated by the traditional bottom gate structure in air and by a water-electrolyte gate geometry. We show that the increased capacitance of the pentacene/water interface leads to a large improvement of the synapse-like behavior of these devices. STP of comparable amplitude (about 50% of the total output current) is observed at a reduced working voltage (i.e. spike voltage of 0.4V in water, instead of 10 V in air). Moreover, the typical dynamic time response of the synapstor is also decreased by about a factor 10 (ca. 0.2s instead of ca. 2-5s). These last results represent major improvements towards the use of these organic/NPs synapstor in biocompatible application e.g. as synapse prosthesis. [1] F. Alibart et al., Adv. Func. Mater. 20, 330 (2010). [2] F. Alibart et al., Adv. Func. Mater. 22, 609-16 (2012). [3] O. Bichler et al., IEEE Trans. Electron. Dev. 57(11), 3115-3122 (2010). [4] O. Bichler et al., Neural Computation 25(2), 549-566 (2013).Show less >
Show more >We have recently demonstrated how we can use charge trapping/detrapping in an array of gold nanoparticules (NPs) at the SiO2/pentacene interface to design a SYNAPSTOR (synapse transistor) mimicking the dynamic plasticity of a biological synapse. This device (memristor-like) mimics short-term plasticity (STP) [1] and temporal correlation plasticity (STDP, spike-timing dependent plasticity) [2], two "functions" at the basis of learning processes. A compact model was developed [3], and we demonstrated an associative memory, which can be trained to present a pavlovian response [4]. Here we develop an electrolyte-gated version of this device for biocompatible applications. We report on a detailed understanding of the electrical behavior of these synapstors in physiologically relevant conditions. We compare synapstors operated by the traditional bottom gate structure in air and by a water-electrolyte gate geometry. We show that the increased capacitance of the pentacene/water interface leads to a large improvement of the synapse-like behavior of these devices. STP of comparable amplitude (about 50% of the total output current) is observed at a reduced working voltage (i.e. spike voltage of 0.4V in water, instead of 10 V in air). Moreover, the typical dynamic time response of the synapstor is also decreased by about a factor 10 (ca. 0.2s instead of ca. 2-5s). These last results represent major improvements towards the use of these organic/NPs synapstor in biocompatible application e.g. as synapse prosthesis. [1] F. Alibart et al., Adv. Func. Mater. 20, 330 (2010). [2] F. Alibart et al., Adv. Func. Mater. 22, 609-16 (2012). [3] O. Bichler et al., IEEE Trans. Electron. Dev. 57(11), 3115-3122 (2010). [4] O. Bichler et al., Neural Computation 25(2), 549-566 (2013).Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Source :