Gold-free ternary III-V antimonide nanowire ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Gold-free ternary III-V antimonide nanowire arrays on silicon : twin-free down to the first bilayer
Author(s) :
Conesa-Boj, Sònia [Auteur]
Laboratoire des Matériaux Semiconducteurs / Laboratory of Semiconductor Materials [LMSC]
Kriegner, Dominik [Auteur]
Institute of Semiconductor and Solid State Physics
Han, Xiang-Lei [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plissard, S.R. [Auteur]
Kavli Institute of Nanosciences [Delft] [KI-NANO]
Wallart, Xavier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Stangl, Julian [Auteur]
Institute of Semiconductor and Solid State Physics
Fontcuberta I Morral, Anna [Auteur]
Laboratoire des Matériaux Semiconducteurs / Laboratory of Semiconductor Materials [LMSC]
Caroff, Philippe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratoire des Matériaux Semiconducteurs / Laboratory of Semiconductor Materials [LMSC]
Kriegner, Dominik [Auteur]
Institute of Semiconductor and Solid State Physics
Han, Xiang-Lei [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plissard, S.R. [Auteur]
Kavli Institute of Nanosciences [Delft] [KI-NANO]
Wallart, Xavier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Stangl, Julian [Auteur]
Institute of Semiconductor and Solid State Physics
Fontcuberta I Morral, Anna [Auteur]
Laboratoire des Matériaux Semiconducteurs / Laboratory of Semiconductor Materials [LMSC]
Caroff, Philippe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Nano Letters
Pages :
326-332
Publisher :
American Chemical Society
Publication date :
2014
ISSN :
1530-6984
English keyword(s) :
Nanowire
III−V
antimonide
GaAsSb
crystal structure
silicon
zinc blende
twin-free
transmission electron microscopy
energy dispersive X-ray spectroscopy
molecular beam epitaxy
X-ray diffraction
synchrotron radiation
III−V
antimonide
GaAsSb
crystal structure
silicon
zinc blende
twin-free
transmission electron microscopy
energy dispersive X-ray spectroscopy
molecular beam epitaxy
X-ray diffraction
synchrotron radiation
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
With the continued maturation of III-V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III-V nanowires integrated on silicon should be entirely free of extended planar defects ...
Show more >With the continued maturation of III-V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III-V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal-oxide-semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1-x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires' complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform.Show less >
Show more >With the continued maturation of III-V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III-V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal-oxide-semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1-x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires' complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890218/pdf
- Open access
- Access the document
- Open access
- Access the document