High on-off conductance switching ratio ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems
Author(s) :
Smaali, K. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lenfant, Stephane [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Karpe, S. [Auteur]
Chimie et Ingénierie Moléculaire d'Angers [CIMA]
Oçafrain, M. [Auteur]
Chimie et Ingénierie Moléculaire d'Angers [CIMA]
Blanchard, P. [Auteur]
Chimie et Ingénierie Moléculaire d'Angers [CIMA]
Deresmes, D. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Godey, Sylvie [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rochefort, A. [Auteur]
Roncali, J. [Auteur]
Chimie et Ingénierie Moléculaire d'Angers [CIMA]
Vuillaume, D. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lenfant, Stephane [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Karpe, S. [Auteur]
Chimie et Ingénierie Moléculaire d'Angers [CIMA]
Oçafrain, M. [Auteur]
Chimie et Ingénierie Moléculaire d'Angers [CIMA]
Blanchard, P. [Auteur]
Chimie et Ingénierie Moléculaire d'Angers [CIMA]
Deresmes, D. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Godey, Sylvie [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rochefort, A. [Auteur]
Roncali, J. [Auteur]
Chimie et Ingénierie Moléculaire d'Angers [CIMA]
Vuillaume, D. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
ACS Nano
Pages :
2411-2421
Publisher :
American Chemical Society
Publication date :
2010
ISSN :
1936-0851
English keyword(s) :
molecular switch
azobenzene
self-assembled monolayer
molecular electronics
charge transport
first principles
azobenzene
self-assembled monolayer
molecular electronics
charge transport
first principles
HAL domain(s) :
Physique [physics]
English abstract : [en]
A new azobenzene-thiophene molecular switch is designed, synthesized and used to form self-assembled monolayers (SAM) on gold. An "on/off" conductance ratio up to 7x103 (with an average value of 1.5x103) is reported. The ...
Show more >A new azobenzene-thiophene molecular switch is designed, synthesized and used to form self-assembled monolayers (SAM) on gold. An "on/off" conductance ratio up to 7x103 (with an average value of 1.5x103) is reported. The "on" conductance state is clearly identified to the cis isomer of the azobenzene moiety. The high "on/off" ratio is explained in terms of photo-induced, configuration-related, changes in the electrode-molecule interface energetics (changes in the energy position of the molecular orbitals with respect to the Fermi energy of electrodes) in addition to changes in the tunnel barrier length (length of the molecules). First principles DFT calculations demonstrate a better delocalization of the frontier orbitals, as well as a stronger electronic coupling between the azobenzene moiety and the electrode for the cis configuration over the trans one. Measured photoionization cross-sections for the molecules in the SAM are close to the known values for azobenzene derivatives in solution.Show less >
Show more >A new azobenzene-thiophene molecular switch is designed, synthesized and used to form self-assembled monolayers (SAM) on gold. An "on/off" conductance ratio up to 7x103 (with an average value of 1.5x103) is reported. The "on" conductance state is clearly identified to the cis isomer of the azobenzene moiety. The high "on/off" ratio is explained in terms of photo-induced, configuration-related, changes in the electrode-molecule interface energetics (changes in the energy position of the molecular orbitals with respect to the Fermi energy of electrodes) in addition to changes in the tunnel barrier length (length of the molecules). First principles DFT calculations demonstrate a better delocalization of the frontier orbitals, as well as a stronger electronic coupling between the azobenzene moiety and the electrode for the cis configuration over the trans one. Measured photoionization cross-sections for the molecules in the SAM are close to the known values for azobenzene derivatives in solution.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- http://arxiv.org/pdf/1002.0943
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-00548965/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-00548965/document
- Open access
- Access the document
- 1002.0943.pdf
- Open access
- Access the document
- 1002.0943
- Open access
- Access the document
- document
- Open access
- Access the document