Electron transport properties of gallium ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Electron transport properties of gallium nitride for microscopic power device modelling
Auteur(s) :
Benbakhti, Brahim [Auteur]
University of Glasgow
Rousseau, Michel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Soltani, Ali [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
De Jaeger, Jean-Claude [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
University of Glasgow
Rousseau, Michel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Soltani, Ali [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
De Jaeger, Jean-Claude [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Journal of Physics: Conference Series
Pagination :
012005-1-4
Éditeur :
IOP Science
Date de publication :
2009
ISSN :
1742-6596
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
The design of power GaN devices has to take into account the impact of temperature on device materials due to highly dissipated power and a consequent large self-heating. The accurate knowledge of transport properties as ...
Lire la suite >The design of power GaN devices has to take into account the impact of temperature on device materials due to highly dissipated power and a consequent large self-heating. The accurate knowledge of transport properties as a function of the lattice temperature is essential in order to make a good thermal management to optimise the device performance. In this paper, accurate expressions describing the main transport properties as function of temperature and electric field for wurtzite GaN have been extracted starting from Monte Carlo simulations and then using a genetic algorithm. In particular, these expressions take into account the abrupt change in electron velocity slope at a low electric field (∼20 kV/cm). Using the same methodology, we have determined the temperature dependence of other physical parameters such as the low field mobility, saturation velocity, critical electric field and the corresponding peak velocity in a temperature range of 300 K – 700 K. The results show a very good agreement between the theoretical and experimental values.Lire moins >
Lire la suite >The design of power GaN devices has to take into account the impact of temperature on device materials due to highly dissipated power and a consequent large self-heating. The accurate knowledge of transport properties as a function of the lattice temperature is essential in order to make a good thermal management to optimise the device performance. In this paper, accurate expressions describing the main transport properties as function of temperature and electric field for wurtzite GaN have been extracted starting from Monte Carlo simulations and then using a genetic algorithm. In particular, these expressions take into account the abrupt change in electron velocity slope at a low electric field (∼20 kV/cm). Using the same methodology, we have determined the temperature dependence of other physical parameters such as the low field mobility, saturation velocity, critical electric field and the corresponding peak velocity in a temperature range of 300 K – 700 K. The results show a very good agreement between the theoretical and experimental values.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://doi.org/10.1088/1742-6596/193/1/012005
- Accès libre
- Accéder au document
- https://doi.org/10.1088/1742-6596/193/1/012005
- Accès libre
- Accéder au document
- https://doi.org/10.1088/1742-6596/193/1/012005
- Accès libre
- Accéder au document
- https://doi.org/10.1088/1742-6596/193/1/012005
- Accès libre
- Accéder au document
- https://doi.org/10.1088/1742-6596/193/1/012005
- Accès libre
- Accéder au document