• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A single algorithm for both restless and ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
A single algorithm for both restless and rested rotting bandits
Author(s) :
Seznec, Julien [Auteur]
Scool [Scool]
Lelivrescolaire.fr
Menard, Pierre [Auteur]
Scool [Scool]
Lazaric, Alessandro [Auteur]
Facebook AI Research [Paris] [FAIR]
Valko, Michal [Auteur] refId
DeepMind [Paris]
Conference title :
International Conference on Artificial Intelligence and Statistics
City :
Palermo / Virtual
Country :
Italie
Start date of the conference :
2020-08-26
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
In many application domains (e.g., recommender systems, intelligent tutoring systems), the rewards associated to the actions tend to decrease over time. This decay is either caused by the actions executed in the past (e.g., ...
Show more >
In many application domains (e.g., recommender systems, intelligent tutoring systems), the rewards associated to the actions tend to decrease over time. This decay is either caused by the actions executed in the past (e.g., a user may get bored when songs of the same genre are recommended over and over) or by an external factor (e.g., content becomes outdated). These two situations can be modeled as specific instances of the rested and restless bandit settings, where arms are rotting (i.e., their value decrease over time). These problems were thought to be significantly different, since Levine et al. (2017) showed that state-of-the-art algorithms for restless bandit perform poorly in the rested rotting setting. In this paper, we introduce a novel algorithm, Rotting Adaptive Window UCB (RAW-UCB), that achieves near-optimal regret in both rotting rested and restless bandit, without any prior knowledge of the setting (rested or restless) and the type of non-stationarity (e.g., piece-wise constant, bounded variation). This is in striking contrast with previous negative results showing that no algorithm can achieve similar results as soon as rewards are allowed to increase. We confirm our theoretical findings on a number of synthetic and datasetbased experiments.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-03287835/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03287835/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03287835/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03287835/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • seznec2020single.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • seznec2020single.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017