Probabilistic Modelling of Printed Dots ...
Document type :
Article dans une revue scientifique: Article original
Title :
Probabilistic Modelling of Printed Dots at the Microscopic Scale
Author(s) :
Nguyen, Quoc Thong [Auteur correspondant]
Laboratoire de Mathématiques de Bretagne Atlantique [LMBA]
Delignon, Yves [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Lille Douai]
Septier, Francois [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Lille Douai]
Ho, Anh Thu Phan [Auteur]
Laboratoire Informatique, Image et Interaction - EA 2118 [L3I]
Laboratoire de Mathématiques de Bretagne Atlantique [LMBA]
Delignon, Yves [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Lille Douai]
Septier, Francois [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Lille Douai]
Ho, Anh Thu Phan [Auteur]
Laboratoire Informatique, Image et Interaction - EA 2118 [L3I]
Journal title :
Signal Processing: Image Communication
Pages :
129-138
Publisher :
Elsevier
Publication date :
2018-03
ISSN :
0923-5965
English keyword(s) :
Metropolis Hastings within Gibbs
Bernoulli process
Probabilistic model
Microscopic printing
Markov chain
Bernoulli process
Probabilistic model
Microscopic printing
Markov chain
HAL domain(s) :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Modélisation et simulation
Sciences de l'ingénieur [physics]
Informatique [cs]
Informatique [cs]/Modélisation et simulation
Sciences de l'ingénieur [physics]
Informatique [cs]
English abstract : [en]
Microscopic analysis of paper printing shows regularly spaced dots whose random shape depends on the printing technology, the configuration of the printer as well as the paper properties. The modelling and identification ...
Show more >Microscopic analysis of paper printing shows regularly spaced dots whose random shape depends on the printing technology, the configuration of the printer as well as the paper properties. The modelling and identification of paper and ink interactions are required for qualifying the printing quality, for controlling the printing process and for application in authentication as well. This paper proposes an approach to identify the authentic printer source using micro-tags consisting of microscopic printed dots embedded in the documents. These random shape features are modelled and extracted as a signature for a particular printer. In the paper, we propose a probabilistic model consisting of vector parameters using a spatial interaction binary model with inhomogeneous Markov chain. These parameters determine the location and describe the diverse micro random structures of microscopic printed dots. A Markov chain Monte Carlo (MCMC) algorithm is thus developed to approximate the Minimum Mean Squared Error estimator. The performance is assessed through numerical simulations. The real printed dots from the common printing technologies (conventional offset, waterless offset, inkjet, laser) are used to assess the effectiveness of the model.Show less >
Show more >Microscopic analysis of paper printing shows regularly spaced dots whose random shape depends on the printing technology, the configuration of the printer as well as the paper properties. The modelling and identification of paper and ink interactions are required for qualifying the printing quality, for controlling the printing process and for application in authentication as well. This paper proposes an approach to identify the authentic printer source using micro-tags consisting of microscopic printed dots embedded in the documents. These random shape features are modelled and extracted as a signature for a particular printer. In the paper, we propose a probabilistic model consisting of vector parameters using a spatial interaction binary model with inhomogeneous Markov chain. These parameters determine the location and describe the diverse micro random structures of microscopic printed dots. A Markov chain Monte Carlo (MCMC) algorithm is thus developed to approximate the Minimum Mean Squared Error estimator. The performance is assessed through numerical simulations. The real printed dots from the common printing technologies (conventional offset, waterless offset, inkjet, laser) are used to assess the effectiveness of the model.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01686159v2/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01686159v2/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01686159v2/document
- Open access
- Access the document
- document
- Open access
- Access the document
- paper.pdf
- Open access
- Access the document