• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inferential Induction: A Novel Framework ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Permalink :
http://hdl.handle.net/20.500.12210/57097
Title :
Inferential Induction: A Novel Framework for Bayesian Reinforcement Learning
Author(s) :
Jorge, Emilio [Auteur]
Chalmers University of Technology [Gothenburg, Sweden]
Eriksson, Hannes [Auteur]
Chalmers University of Technology [Gothenburg, Sweden]
Dimitrakakis, Christos [Auteur]
Chalmers University of Technology [Gothenburg, Sweden]
University of Oslo [UiO]
Basu, Debabrota [Auteur]
Scool [Scool]
Chalmers University of Technology [Gothenburg, Sweden]
Grover, Divya [Auteur]
Chalmers University of Technology [Gothenburg, Sweden]
Conference title :
"I Can't Believe It's Not Better!" at NeurIPS Workshops
City :
Vancouver
Country :
Canada
Start date of the conference :
2020-12-07
Book title :
"I Can't Believe It's Not Better!" at NeurIPS Workshops
Journal title :
Proceedings of Machine Learning Research
Publication date :
2020-12-12
English keyword(s) :
Reinforcement Learning
Bayesian Reinforcement Learning
Policy Evaluation
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Intelligence artificielle [cs.AI]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]
English abstract : [en]
Bayesian Reinforcement Learning (BRL) offers a decision-theoretic solution to the reinforcement learning problem. While “model-based” BRL algorithms have focused either on maintaining a posterior distribution on models, ...
Show more >
Bayesian Reinforcement Learning (BRL) offers a decision-theoretic solution to the reinforcement learning problem. While “model-based” BRL algorithms have focused either on maintaining a posterior distribution on models, BRL “model-free” methods try to estimate value function distributions but make strong implicit assumptions or approximations. We describe a novel Bayesian framework, inferential induction, for correctly inferring value function distributions from data, which leads to a new family of BRL algorithms. We design an algorithm, Bayesian Backwards Induction (BBI), with this framework. We experimentally demonstrate that BBI is competitive with the state of the art. However, its advantage relative to existing BRL model-free methods is not as great as we have expected, particularly when the additional computational burden is taken into account.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Submission date :
2021-11-13T02:51:44Z
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03125100/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017