Kernel-Partial Least Squares regression ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Kernel-Partial Least Squares regression coupled to pseudo-sample trajectories for the analysis of mixture designs of experiments
Author(s) :
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Palací-López, Daniel [Auteur]
Kerkenaar, Harmen H.M. [Auteur]
Postma, Geert J. [Auteur]
Buydens, Lutgarde M.C. [Auteur]
Ferrer, Alberto [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Palací-López, Daniel [Auteur]
Kerkenaar, Harmen H.M. [Auteur]
Postma, Geert J. [Auteur]
Buydens, Lutgarde M.C. [Auteur]
Ferrer, Alberto [Auteur]
Journal title :
Chemometrics and Intelligent Laboratory Systems
Volume number :
175
Pages :
37-46
Publication date :
2018-04
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
This article explores the potential of Kernel-Partial Least Squares (K-PLS) regression for the analysis of data proceeding from mixture designs of experiments. Gower's idea of pseudo-sample trajectories is exploited for ...
Show more >This article explores the potential of Kernel-Partial Least Squares (K-PLS) regression for the analysis of data proceeding from mixture designs of experiments. Gower's idea of pseudo-sample trajectories is exploited for interpretation purposes. The results show that, when the datasets under study are affected by severe non-linearities and comprise few observations, the proposed approach can represent a feasible alternative to classical methodologies (i.e. Scheffé polynomial fitting by means of Ordinary Least Squares - OLS - and Cox polynomial fitting by means of Partial Least Squares - PLS). Furthermore, a way of recovering the parameters of a Scheffé model (provided that it holds and has the same complexity as the K-PLS one) from the trend of the aforementioned pseudo-sample trajectories is illustrated via a simulated case-study.Show less >
Show more >This article explores the potential of Kernel-Partial Least Squares (K-PLS) regression for the analysis of data proceeding from mixture designs of experiments. Gower's idea of pseudo-sample trajectories is exploited for interpretation purposes. The results show that, when the datasets under study are affected by severe non-linearities and comprise few observations, the proposed approach can represent a feasible alternative to classical methodologies (i.e. Scheffé polynomial fitting by means of Ordinary Least Squares - OLS - and Cox polynomial fitting by means of Partial Least Squares - PLS). Furthermore, a way of recovering the parameters of a Scheffé model (provided that it holds and has the same complexity as the K-PLS one) from the trend of the aforementioned pseudo-sample trajectories is illustrated via a simulated case-study.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Administrative institution(s) :
CNRS
ENSCL
Université de Lille
ENSCL
Université de Lille
Collections :
Submission date :
2021-11-16T08:23:26Z
2024-02-23T08:57:48Z
2024-02-23T08:57:48Z