Bio‐Inspired Adaptive Sensing through ...
Document type :
Article dans une revue scientifique
DOI :
Title :
Bio‐Inspired Adaptive Sensing through Electropolymerization of Organic Electrochemical Transistors
Author(s) :
Ghazal, Mahdi [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Daher Mansour, Michel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Scholaert, Corentin [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dargent, Thomas [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coffinier, Yannick [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pecqueur, Sébastien [Auteur correspondant]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Alibart, F. [Auteur correspondant]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Daher Mansour, Michel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Scholaert, Corentin [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dargent, Thomas [Auteur]

Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coffinier, Yannick [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pecqueur, Sébastien [Auteur correspondant]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Alibart, F. [Auteur correspondant]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Advanced Electronic Materials
Pages :
2100891
Publisher :
Wiley
Publication date :
2022-03
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Organic electrochemical transistors are considered today as a key technology to interact with a biological medium through their intrinsic ionic-electronic coupling. In this paper, the authors show how this coupling can be ...
Show more >Organic electrochemical transistors are considered today as a key technology to interact with a biological medium through their intrinsic ionic-electronic coupling. In this paper, the authors show how this coupling can be finely tuned (in operando) post-microfabrication via the electropolymerization technique. This strategy exploits the concept of adaptive sensing where both transconductance and impedance are tunable and can be modified on-demand to match different sensing requirements. Material investigation through Raman spectroscopy, atomic force microscopy, and scanning electron microscopy reveals that electropolymerization can lead to a fine control of poly(3,4-ethylenedioxythiophene) (PEDOT) microdomains organization, which directly affects the iono-electronic properties of organic electrochemical transistors (OECTs). They further highlight how volumetric capacitance and effective mobility of PEDOT:polystyrene sulfonate influence distinctively the transconductance and impedance of OECTs. This approach shows to improve the transconductance by 150% while reducing their variability by 60% in comparison with standard spin-coated OECTs. Finally, they show how the technique can influence voltage spike rate hardware classification with direct interest in bio-signals sorting applications.Show less >
Show more >Organic electrochemical transistors are considered today as a key technology to interact with a biological medium through their intrinsic ionic-electronic coupling. In this paper, the authors show how this coupling can be finely tuned (in operando) post-microfabrication via the electropolymerization technique. This strategy exploits the concept of adaptive sensing where both transconductance and impedance are tunable and can be modified on-demand to match different sensing requirements. Material investigation through Raman spectroscopy, atomic force microscopy, and scanning electron microscopy reveals that electropolymerization can lead to a fine control of poly(3,4-ethylenedioxythiophene) (PEDOT) microdomains organization, which directly affects the iono-electronic properties of organic electrochemical transistors (OECTs). They further highlight how volumetric capacitance and effective mobility of PEDOT:polystyrene sulfonate influence distinctively the transconductance and impedance of OECTs. This approach shows to improve the transconductance by 150% while reducing their variability by 60% in comparison with standard spin-coated OECTs. Finally, they show how the technique can influence voltage spike rate hardware classification with direct interest in bio-signals sorting applications.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03546011/document
- Open access
- Access the document
- http://arxiv.org/pdf/2108.13218
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03546011/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Adv%20Elect%20Materials%20-%202021%20-%20Ghazal%20-%20Bio%E2%80%90Inspired%20Adaptive%20Sensing%20through%20Electropolymerization%20of%20Organic.pdf
- Open access
- Access the document
- 2108.13218
- Open access
- Access the document