Morphological influence of BiVO4 nanostructures ...
Document type :
Article dans une revue scientifique
Title :
Morphological influence of BiVO4 nanostructures on peroxymonosulfate activation for highly efficient catalytic degradation of rhodamine B
Author(s) :
Missaoui, Khawla [Auteur]
Ouertani, Rachid [Auteur]
Jbira, Elyes [Auteur]
Boukherroub, Rabah [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Bessaïs, Brahim [Auteur]
Ouertani, Rachid [Auteur]
Jbira, Elyes [Auteur]
Boukherroub, Rabah [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Bessaïs, Brahim [Auteur]
Journal title :
Environmental Science and Pollution Research
Pages :
52236-52246
Publisher :
Springer Verlag
Publication date :
2021-10
ISSN :
0944-1344
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Bismuth vanadate (BiVO4) nanostructured films were prepared and successfully applied for peroxymonosulfate (PMS) activation for the degradation of rhodamine B (RhB) in aqueous solution. The BiVO4 thin films were obtained ...
Show more >Bismuth vanadate (BiVO4) nanostructured films were prepared and successfully applied for peroxymonosulfate (PMS) activation for the degradation of rhodamine B (RhB) in aqueous solution. The BiVO4 thin films were obtained by thermal reaction between electrodeposited bismuth (Bi) films and vanadium precursor. The as-prepared BiVO4 porous, nanoflowers, and cluster nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and BET analysis. The catalytic performance of BiVO4 nanostructures has been carefully evaluated in activating PMS for the degradation of RhB. The nanoflower-like BiVO4 nanostructures exhibit the best catalytic activity. Under optimized conditions, the complete catalytic degradation of RhB using BiVO4 nanoflowers/PMS system was achieved in 17 min at room temperature as revealed by high-performance liquid chromatography (HPLC) analysis. Quenching experiments suggested that sulfate radicals are the main active species in the degradation process. Additionally, BiVO4 catalyst remained stable without any apparent activity loss after five cycling runs.Show less >
Show more >Bismuth vanadate (BiVO4) nanostructured films were prepared and successfully applied for peroxymonosulfate (PMS) activation for the degradation of rhodamine B (RhB) in aqueous solution. The BiVO4 thin films were obtained by thermal reaction between electrodeposited bismuth (Bi) films and vanadium precursor. The as-prepared BiVO4 porous, nanoflowers, and cluster nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and BET analysis. The catalytic performance of BiVO4 nanostructures has been carefully evaluated in activating PMS for the degradation of RhB. The nanoflower-like BiVO4 nanostructures exhibit the best catalytic activity. Under optimized conditions, the complete catalytic degradation of RhB using BiVO4 nanoflowers/PMS system was achieved in 17 min at room temperature as revealed by high-performance liquid chromatography (HPLC) analysis. Quenching experiments suggested that sulfate radicals are the main active species in the degradation process. Additionally, BiVO4 catalyst remained stable without any apparent activity loss after five cycling runs.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :