Dual sensing and actuation of ultrathin ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
DOI :
Title :
Dual sensing and actuation of ultrathin conducting polymer transducers
Author(s) :
Nguyen, Tan Ngoc [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plesse, Cedric [Auteur]
Vidal, Frederic [Auteur]
Grondel, Sébastien [Auteur]
INSA Institut National des Sciences Appliquées Hauts-de-France [INSA Hauts-De-France]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cattan, Eric [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Madden, John D.W. [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plesse, Cedric [Auteur]
Vidal, Frederic [Auteur]
Grondel, Sébastien [Auteur]
INSA Institut National des Sciences Appliquées Hauts-de-France [INSA Hauts-De-France]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cattan, Eric [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Madden, John D.W. [Auteur]
Conference title :
Electroactive Polymer Actuators and Devices (EAPAD) XXI
City :
Denver, CO
Country :
Etats-Unis d'Amérique
Start date of the conference :
2019-03-03
Publisher :
SPIE
HAL domain(s) :
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Acoustique [physics.class-ph]
Sciences de l'ingénieur [physics]/Matériaux
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Acoustique [physics.class-ph]
Sciences de l'ingénieur [physics]/Matériaux
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
English abstract : [en]
Conducting polymers are active materials that exhibit an interesting bidirectional electromechanical coupling, where an input voltage results in the displacement of the film and a voltage is produced when a displacement ...
Show more >Conducting polymers are active materials that exhibit an interesting bidirectional electromechanical coupling, where an input voltage results in the displacement of the film and a voltage is produced when a displacement is applied to the film. Mechanical deformation of the transducer by external mechanical loads causes movement of ions, and the generation of voltages. In this work, a dual sensing and actuation model for conducting polymer is described. The model comprises an RC lumped circuit, representing the electrochemical model, a mechanical model described by a dynamic Euler – Bernoulli beam theory, and an empirical strain-to-charge ratio. All three submodels are presented in a self-consistent Bond Graph formalism. The predictions of this model are then demonstrated by comparing with the experimental sensing and actuation results of a 17 µm thin poly(3,4-ethylenedioxythiophene) – based trilayer transducer, showing that the complete electromechanical model elucidates an effective approach to describe both sensing and actuation.Show less >
Show more >Conducting polymers are active materials that exhibit an interesting bidirectional electromechanical coupling, where an input voltage results in the displacement of the film and a voltage is produced when a displacement is applied to the film. Mechanical deformation of the transducer by external mechanical loads causes movement of ions, and the generation of voltages. In this work, a dual sensing and actuation model for conducting polymer is described. The model comprises an RC lumped circuit, representing the electrochemical model, a mechanical model described by a dynamic Euler – Bernoulli beam theory, and an empirical strain-to-charge ratio. All three submodels are presented in a self-consistent Bond Graph formalism. The predictions of this model are then demonstrated by comparing with the experimental sensing and actuation results of a 17 µm thin poly(3,4-ethylenedioxythiophene) – based trilayer transducer, showing that the complete electromechanical model elucidates an effective approach to describe both sensing and actuation.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Comment :
Session 12A - EAP Sensors and Actuators
Source :