Untitled
Document type :
Communication dans un congrès avec actes
Author(s) :
Legry, Martin [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Colas, Frédéric [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Saudemont, Christophe [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Dieulot, Jean-Yves [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ducarme, Olivier [Auteur]
ENGIE
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Colas, Frédéric [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Saudemont, Christophe [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Dieulot, Jean-Yves [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ducarme, Olivier [Auteur]
ENGIE
Conference title :
IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society
City :
Washington
Country :
Etats-Unis d'Amérique
Start date of the conference :
2018
Book title :
IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society
Publisher :
IEEE
Publication date :
2018-10
Keyword(s) :
Microgrids
Predictive Control
Hierarchical control
Energy Management System
Power Management System
Predictive Control
Hierarchical control
Energy Management System
Power Management System
HAL domain(s) :
Sciences de l'ingénieur [physics]/Energie électrique
French abstract :
This paper proposes a two-layer microgrid supervisor based on Model Predictive Control (MPC). The supervisor in the upper layer relies on an economical optimization that considers the cost of energy and the load and ...
Show more >This paper proposes a two-layer microgrid supervisor based on Model Predictive Control (MPC). The supervisor in the upper layer relies on an economical optimization that considers the cost of energy and the load and production forecasts to define the State of Charge (SoC) targets for each storage device on a timescale of 15 minutes. The lower layer displays a shorter timescale and aims to control the equipment to ensure the stability of the overall system and SoC tracking while satisfying the economic constraints specified by the upper layer. These two layers require an uniformization of the timestep and of the references in order to behave properly. The main contributions of this paper are the microgrid network modelling embedded in the optimization routine of the lower layer and a discretization for integrating upper-layer references.Show less >
Show more >This paper proposes a two-layer microgrid supervisor based on Model Predictive Control (MPC). The supervisor in the upper layer relies on an economical optimization that considers the cost of energy and the load and production forecasts to define the State of Charge (SoC) targets for each storage device on a timescale of 15 minutes. The lower layer displays a shorter timescale and aims to control the equipment to ensure the stability of the overall system and SoC tracking while satisfying the economic constraints specified by the upper layer. These two layers require an uniformization of the timestep and of the references in order to behave properly. The main contributions of this paper are the microgrid network modelling embedded in the optimization routine of the lower layer and a discretization for integrating upper-layer references.Show less >
English abstract : [en]
This paper proposes a two-layer microgrid supervisor based on Model Predictive Control (MPC). The supervisor in the upper layer relies on an economical optimization that considers the cost of energy and the load and ...
Show more >This paper proposes a two-layer microgrid supervisor based on Model Predictive Control (MPC). The supervisor in the upper layer relies on an economical optimization that considers the cost of energy and the load and production forecasts to define the State of Charge (SoC) targets for each storage device on a timescale of 15 minutes. The lower layer displays a shorter timescale and aims to control the equipment to ensure the stability of the overall system and SoC tracking while satisfying the economic constraints specified by the upper layer. These two layers require an uniformization of the timestep and of the references in order to behave properly. The main contributions of this paper are the microgrid network modelling embedded in the optimization routine of the lower layer and a discretization for integrating upper-layer references.Show less >
Show more >This paper proposes a two-layer microgrid supervisor based on Model Predictive Control (MPC). The supervisor in the upper layer relies on an economical optimization that considers the cost of energy and the load and production forecasts to define the State of Charge (SoC) targets for each storage device on a timescale of 15 minutes. The lower layer displays a shorter timescale and aims to control the equipment to ensure the stability of the overall system and SoC tracking while satisfying the economic constraints specified by the upper layer. These two layers require an uniformization of the timestep and of the references in order to behave properly. The main contributions of this paper are the microgrid network modelling embedded in the optimization routine of the lower layer and a discretization for integrating upper-layer references.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03602470/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03602470/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03602470/document
- Open access
- Access the document
- document
- Open access
- Access the document
- L2EP_IECON_2018_LEGRY.pdf
- Open access
- Access the document