Topological gap solitons in a 1D non-Hermitian ...
Document type :
Pré-publication ou Document de travail
Title :
Topological gap solitons in a 1D non-Hermitian lattice
Author(s) :
Pernet, N. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
St-Jean, P. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Solnyshkov, D. D. [Auteur]
Institut Pascal [IP]
Institut universitaire de France [IUF]
Malpuech, G. [Auteur]
Institut Pascal [IP]
Zambon, N. Carlon [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Real, B. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Jamadi, O. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Lemaître, A. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Morassi, M. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Gratiet, L. Le [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Baptiste, T. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Harouri, A. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Sagnes, I. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Amo, A. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Ravets, S. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Bloch, J. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Centre de Nanosciences et de Nanotechnologies [C2N]
St-Jean, P. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Solnyshkov, D. D. [Auteur]
Institut Pascal [IP]
Institut universitaire de France [IUF]
Malpuech, G. [Auteur]
Institut Pascal [IP]
Zambon, N. Carlon [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Real, B. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Jamadi, O. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Lemaître, A. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Morassi, M. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Gratiet, L. Le [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Baptiste, T. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Harouri, A. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Sagnes, I. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Amo, A. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Ravets, S. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Bloch, J. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
HAL domain(s) :
Physique [physics]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]
English abstract : [en]
Nonlinear topological photonics is an emerging field aiming at extending the fascinating properties of topological states to the realm where interactions between the system constituents cannot be neglected. Interactions ...
Show more >Nonlinear topological photonics is an emerging field aiming at extending the fascinating properties of topological states to the realm where interactions between the system constituents cannot be neglected. Interactions can indeed trigger topological phase transitions, induce symmetry protection and robustness properties for the many-body system. Moreover when coupling to the environment via drive and dissipation is also considered, novel collective phenomena are expected to emerge. Here, we report the nonlinear response of a polariton lattice implementing a non-Hermitian version of the Su-Schrieffer-Heeger model. We trigger the formation of solitons in the topological gap of the band structure, and show that these solitons demonstrate robust nonlinear properties with respect to defects, because of the underlying sub-lattice symmetry. Leveraging on the system non-Hermiticity, we engineer the drive phase pattern and unveil bulk solitons that have no counterpart in conservative systems. They are localized on a single sub-lattice with a spatial profile alike a topological edge state. Our results demonstrate a tool to stabilize the nonlinear response of driven dissipative topological systems, which may constitute a powerful resource for nonlinear topological photonics.Show less >
Show more >Nonlinear topological photonics is an emerging field aiming at extending the fascinating properties of topological states to the realm where interactions between the system constituents cannot be neglected. Interactions can indeed trigger topological phase transitions, induce symmetry protection and robustness properties for the many-body system. Moreover when coupling to the environment via drive and dissipation is also considered, novel collective phenomena are expected to emerge. Here, we report the nonlinear response of a polariton lattice implementing a non-Hermitian version of the Su-Schrieffer-Heeger model. We trigger the formation of solitons in the topological gap of the band structure, and show that these solitons demonstrate robust nonlinear properties with respect to defects, because of the underlying sub-lattice symmetry. Leveraging on the system non-Hermiticity, we engineer the drive phase pattern and unveil bulk solitons that have no counterpart in conservative systems. They are localized on a single sub-lattice with a spatial profile alike a topological edge state. Our results demonstrate a tool to stabilize the nonlinear response of driven dissipative topological systems, which may constitute a powerful resource for nonlinear topological photonics.Show less >
Language :
Anglais
Source :
Files
- http://arxiv.org/pdf/2101.01038
- Open access
- Access the document
- 2101.01038
- Open access
- Access the document