Adsorption-reduction of Cr(VI) onto ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Adsorption-reduction of Cr(VI) onto unmodified and phytic acid-modified carob waste: Kinetic and isotherm modeling
Author(s) :
Bouaouina, Kenza [Auteur]
Barras, Alexandre [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Bezzi, Nacer [Auteur]
Amin, Mohammed [Auteur]
Taif University [TU]
Szunerits, Sabine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Boukherroub, Rabah [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Barras, Alexandre [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Bezzi, Nacer [Auteur]
Amin, Mohammed [Auteur]
Taif University [TU]
Szunerits, Sabine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Boukherroub, Rabah [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Journal title :
Chemosphere
Pages :
134188
Publisher :
Elsevier
Publication date :
2022-06
ISSN :
0045-6535
English keyword(s) :
Carob waste
Phytic acid
Cr(VI) adsorption
Kinetic-isotherm
Thermodynamic modeling
Phytic acid
Cr(VI) adsorption
Kinetic-isotherm
Thermodynamic modeling
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Carob waste (CW) is an agro-biomass material abundant in nature with potential use for eco-friendly remediation. However, like many biomass-based adsorbents, it suffers from its low adsorption capacity for organic/inorganic ...
Show more >Carob waste (CW) is an agro-biomass material abundant in nature with potential use for eco-friendly remediation. However, like many biomass-based adsorbents, it suffers from its low adsorption capacity for organic/inorganic pollutants. Therefore, modification using physical and/or chemical means is commonly applied to improve the adsorptive properties of biomass-based adsorbents. In this study, carob waste (CW) and carob waste functionalized with phytic acid (PA-CW), as an ecofriendly product, were applied for the first time for Cr(VI) elimination. Various methods were applied for the material characterization like Fourier-transform infrared spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA and DTG), X-ray photoelectron spectroscopy (XPS), specific surface area and porosity measurements. The results proved that both CW and PA-CW own appropriate features for efficient adsorption. Bach experiments revealed that the optimum parameters for Cr(VI) (100 mg/mL) removal at 25 °C were pH 2, 0.05 and 0.025 g as adsorbent dose for CW and PA-CW, respectively, over 120 min contact time. The kinetic of adsorption was well-described by the pseudo-second order model, whereas the isotherm modeling fitted well the modified Langmuir model. CW and PA-CW achieved respectively maximum adsorption capacities of 212.4 and 387.9 mg/g, which are among the highest values so far reported for biomass-based adsorbent materials. These results confirmed that CW and PA-CW could be alternative cost-effective adsorbents even for high concentrations of Cr(VI) in industrial wastewaters along with their reduction capacity.Show less >
Show more >Carob waste (CW) is an agro-biomass material abundant in nature with potential use for eco-friendly remediation. However, like many biomass-based adsorbents, it suffers from its low adsorption capacity for organic/inorganic pollutants. Therefore, modification using physical and/or chemical means is commonly applied to improve the adsorptive properties of biomass-based adsorbents. In this study, carob waste (CW) and carob waste functionalized with phytic acid (PA-CW), as an ecofriendly product, were applied for the first time for Cr(VI) elimination. Various methods were applied for the material characterization like Fourier-transform infrared spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA and DTG), X-ray photoelectron spectroscopy (XPS), specific surface area and porosity measurements. The results proved that both CW and PA-CW own appropriate features for efficient adsorption. Bach experiments revealed that the optimum parameters for Cr(VI) (100 mg/mL) removal at 25 °C were pH 2, 0.05 and 0.025 g as adsorbent dose for CW and PA-CW, respectively, over 120 min contact time. The kinetic of adsorption was well-described by the pseudo-second order model, whereas the isotherm modeling fitted well the modified Langmuir model. CW and PA-CW achieved respectively maximum adsorption capacities of 212.4 and 387.9 mg/g, which are among the highest values so far reported for biomass-based adsorbent materials. These results confirmed that CW and PA-CW could be alternative cost-effective adsorbents even for high concentrations of Cr(VI) in industrial wastewaters along with their reduction capacity.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- document
- Open access
- Access the document
- S0045653522006816.pdf
- Open access
- Access the document