• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antidictionary-Based Cardiac Arrhythmia ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
DOI :
10.1109/ISCAS48785.2022.9937853
Title :
Antidictionary-Based Cardiac Arrhythmia Classification for Smart ECG Sensors
Author(s) :
Duforest, Julien [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Larras, Benoit [Auteur] refId
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Frappe, Antoine [Auteur] refId
JUNIA [JUNIA]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Deepu, Chacko John [Auteur]
University College Dublin [Dublin] [UCD]
Märtens, Olev [Auteur]
Tallinn University of Technology [TalTech]
Conference title :
2022 IEEE International Symposium on Circuits and Systems (ISCAS)
City :
Austin, TX
Country :
Etats-Unis d'Amérique
Start date of the conference :
2022-05-28
Publisher :
IEEE
English keyword(s) :
Cardiac Arrhythmia Classification
Electrocardiogram
Event-driven
Antidictionary
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Cardiovascular diseases can be detected early by analyzing the electrocardiogram of a patient using wearable systems. In the context of smart sensors, detecting arrhythmias with good accuracy and ultra-low power consumption ...
Show more >
Cardiovascular diseases can be detected early by analyzing the electrocardiogram of a patient using wearable systems. In the context of smart sensors, detecting arrhythmias with good accuracy and ultra-low power consumption is required for long-term monitoring. This paper presents a novel cardiac arrhythmia classification method based on antidictionaries. The features are sequences of consecutive slopes that are generated from event-driven processing of the input signal. The proposed system shows an average detection accuracy of 98% while offering an ultra-low complexity. This antidictionary-based method is also particularly suited to imbalanced datasets since the antidictionaries are created exclusively from heartbeats classified as normal beats.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Event Driven Artificial Intelligence Hardware for Biomedical Sensors
Collections :
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03701059/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03701059/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Antidictionary-Based%20Cardiac%20Arrhythmia%20Classification%20For%20Smart%20ECG%20sensors%20v4.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Antidictionary-Based%20Cardiac%20Arrhythmia%20Classification%20For%20Smart%20ECG%20sensors%20v4.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017