Acoustic Sensor Based on a Cylindrical ...
Document type :
Article dans une revue scientifique
DOI :
Title :
Acoustic Sensor Based on a Cylindrical Resonator for Monitoring a Liquid Flow
Author(s) :
Gueddida, Abdellatif [Auteur correspondant]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pennec, Yan [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Silveira Fiates, Ana Luiza [Auteur]
University of Bremen
Vellekoop, Michael Johannes [Auteur]
University of Bremen
Bonello, Bernard [Auteur]
Institut des Nanosciences de Paris [INSP]
Djafari-Rouhani, Bahram [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pennec, Yan [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Silveira Fiates, Ana Luiza [Auteur]
University of Bremen
Vellekoop, Michael Johannes [Auteur]
University of Bremen
Bonello, Bernard [Auteur]
Institut des Nanosciences de Paris [INSP]
Djafari-Rouhani, Bahram [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Crystals
Pages :
1398, 12 pages
Publisher :
MDPI
Publication date :
2022-10
ISSN :
2073-4352
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
We present a numerical investigation of an acoustic sensor based on a cylindrical resonator to monitor the acoustic properties of liquids flowing in a tube. The sensor design consists of a hollow cylindrical washer surrounding ...
Show more >We present a numerical investigation of an acoustic sensor based on a cylindrical resonator to monitor the acoustic properties of liquids flowing in a tube. The sensor design consists of a hollow cylindrical washer surrounding the tube, which carries the liquid, and which can be filled during the sensing process. Due to the impedance mismatch between the liquid and the solid washer, we demonstrate the presence of high-quality factor resonances associated with the acoustic properties of the liquid (such as velocity, density, or viscosity) appearing as sharp spectral features in the transmission and detection measurements. An appropriate choice of geometrical parameters allows either to obtain two distinct resonances associated with the liquid and the surrounding washer or to overlap the narrow resonance of the liquid with the broad resonance of the washer and achieve a Fano-type resonance from their interaction. The sensitivity of the resonances to the acoustic properties of the liquid are investigated as a function of the geometrical parameters. We show that for highly viscous fluids, the vanishing of very narrow peaks can be avoided by increasing the thickness of the washer and, therefore, decreasing the quality factors. The calculations are performed in the framework of a finite element method. Our design provides a promising platform for sensing several acoustic characteristics of liquids flowing in tubes.Show less >
Show more >We present a numerical investigation of an acoustic sensor based on a cylindrical resonator to monitor the acoustic properties of liquids flowing in a tube. The sensor design consists of a hollow cylindrical washer surrounding the tube, which carries the liquid, and which can be filled during the sensing process. Due to the impedance mismatch between the liquid and the solid washer, we demonstrate the presence of high-quality factor resonances associated with the acoustic properties of the liquid (such as velocity, density, or viscosity) appearing as sharp spectral features in the transmission and detection measurements. An appropriate choice of geometrical parameters allows either to obtain two distinct resonances associated with the liquid and the surrounding washer or to overlap the narrow resonance of the liquid with the broad resonance of the washer and achieve a Fano-type resonance from their interaction. The sensitivity of the resonances to the acoustic properties of the liquid are investigated as a function of the geometrical parameters. We show that for highly viscous fluids, the vanishing of very narrow peaks can be avoided by increasing the thickness of the washer and, therefore, decreasing the quality factors. The calculations are performed in the framework of a finite element method. Our design provides a promising platform for sensing several acoustic characteristics of liquids flowing in tubes.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03815230/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Gueddida_crystals-12-01398-2.pdf
- Open access
- Access the document