• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Walsh-based surrogate-assisted multi-objective ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.asoc.2023.110061
Title :
Walsh-based surrogate-assisted multi-objective combinatorial optimization: A fine-grained analysis for pseudo-boolean functions
Author(s) :
Derbel, Bilel [Auteur] refId
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Pruvost, Geoffrey [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Liefooghe, Arnaud [Auteur] refId
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Verel, Sébastien [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Zhang, Qingfu [Auteur]
City University of Hong Kong [Hong Kong] [CUHK]
Journal title :
Applied Soft Computing
Pages :
110061
Publisher :
Elsevier
Publication date :
2023-03
ISSN :
1568-4946
English keyword(s) :
Multi-objective optimization
Discrete surrogates
Decomposition
HAL domain(s) :
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche opérationnelle [cs.RO]
English abstract : [en]
The aim of this paper is to study surrogate-assisted algorithms for expensive multiobjective combinatorial optimization problems. Targeting pseudo-boolean domains, we provide a fine-grained analysis of an optimization ...
Show more >
The aim of this paper is to study surrogate-assisted algorithms for expensive multiobjective combinatorial optimization problems. Targeting pseudo-boolean domains, we provide a fine-grained analysis of an optimization framework using the Walsh basis as a core surrogate model. The considered framework uses decomposition in the objective space, and integrates three different components, namely, (i) an inner optimizer for searching promising solutions with respect to the so-constructed surrogate, (ii) a selection strategy to decide which solution is to be evaluated by the expensive objectives, and (iii) the strategy used to setup the Walsh order hyper-parameter. Based on extensive experiments using two benchmark problems, namely bi-objective NK-landscapes and unconstrained binary quadratic programming problems (UBQP), we conduct a comprehensive in-depth analysis of the combined effects of the considered components on search performance, and provide evidence on the effectiveness of the proposed search strategies. As a by-product, our work shed more light on the key challenges for designing a successful surrogate-assisted multi-objective combinatorial search process.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Optimisation Multiobjectif Big
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • paper-revision-2_hal.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017