• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalized homogeneous control with ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article de synthèse/Review paper
DOI :
10.1002/rnc.6612
Title :
Generalized homogeneous control with integral action
Author(s) :
Zhou, Yu [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Polyakov, Andrey [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Finite-time control and estimation for distributed systems [VALSE]
Zheng, Gang [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST]
Journal title :
International Journal of Robust and Nonlinear Control
Pages :
4345-4366
Publisher :
Wiley
Publication date :
2023-01-25
ISSN :
1049-8923
English keyword(s) :
integral control
finite-time
strict Lyapunov
Homogeneous system
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
A generalized homogeneous control with integral action for a multiple-input plant operating under uncertainty conditions is designed. The stability analysis is essentially based on a special version of the non-smooth ...
Show more >
A generalized homogeneous control with integral action for a multiple-input plant operating under uncertainty conditions is designed. The stability analysis is essentially based on a special version of the non-smooth Lyapunov function theorem for differential equations with discontinuous right-hand sides. A Lyapunov function for analysis of the closed-loop system is presented. For negative homogeneity degree, this Lyapunov function becomes a strict Lyapunov function allowing an advanced analysis to be provided. In particular, the maximum control magnitude and the settling-time of the closed-loop system are estimated and a class of disturbances to be rejected by the control law is characterized. The control parameters are tuned by solving a system of Linear Matrix Inequalities (LMIs), whose feasibility is proved at least for small (close to zero) homogeneity degrees. The theoretical results are illustrated by numerical simulations.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • wileyNJD-AMA.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • wileyNJD-AMA.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017