• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Private Sampling with Identifiable Cheaters
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
Title :
Private Sampling with Identifiable Cheaters
Author(s) :
Sabater, César [Auteur]
Machine Learning in Information Networks [MAGNET]
Hahn, Florian [Auteur]
University of Twente
Peter, Andreas [Auteur]
University of Oldenburg
Ramon, Jan [Auteur] refId
Machine Learning in Information Networks [MAGNET]
Journal title :
Proceedings on Privacy Enhancing Technologies
Publisher :
Privacy Enhancing Technologies Symposium
Publication date :
2023
ISSN :
2299-0984
English keyword(s) :
differential privacy
sampling
zero knowledge proofs
multiparty computation
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
English abstract : [en]
In this paper we study verifiable sampling from probability distributions in the context of multi-party computation. This has various applications in randomized algorithms performed collaboratively by parties not trusting ...
Show more >
In this paper we study verifiable sampling from probability distributions in the context of multi-party computation. This has various applications in randomized algorithms performed collaboratively by parties not trusting each other. One example is differentially private machine learning where noise should be drawn, typically from a Laplace or Gaussian distribution, and it is desirable that no party can bias this process. In particular, we propose algorithms to draw random numbers from uniform, Laplace, Gaussian and arbitrary probability distributions, and to verify honest execution of the protocols through zero-knowledge proofs. We propose protocols that result in one party knowing the drawn number and protocols that deliver the drawn random number as a shared secret.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Recherche en Medicine respectant la vie Privée
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • main.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017