A review of noteworthy/major innovations ...
Document type :
Article dans une revue scientifique: Article de synthèse/Review paper
Permalink :
Title :
A review of noteworthy/major innovations in wearable clothing for thermal and moisture management from material to fabric structure
Author(s) :
Kaleem Ullah, Hafiz-Muhammad [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Lejeune, Joseph [Auteur]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Cayla, Aurélie [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Monceaux, Mélanie [Auteur]
Campagne, Christine [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Devaux, Eric [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Lejeune, Joseph [Auteur]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Cayla, Aurélie [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Monceaux, Mélanie [Auteur]
Campagne, Christine [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Devaux, Eric [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Journal title :
Textile Research Journal
Abbreviated title :
Text. Res. J.
Volume number :
-
Pages :
-
Publication date :
2021-08-17
ISSN :
0040-5175
English keyword(s) :
Personal thermal regulation textile
moisture and thermal management textile
thermo-physiological comfort
moisture and thermal management textile
thermo-physiological comfort
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
The human body exchanges heat through the environment by various means, such as radiation, evaporation, conduction, and convection. Thermo-physiological comfort is associated with the effective heat transfer between the ...
Show more >The human body exchanges heat through the environment by various means, such as radiation, evaporation, conduction, and convection. Thermo-physiological comfort is associated with the effective heat transfer between the body and the atmosphere, maintaining the body temperature in a tolerable thermal range (36.5–37.5ºC). In order to ensure comfort, the body heat must be preserved or emitted, depending on external conditions. If the body heat is not properly managed, it can cause hyperthermia, heatstroke, and thermal discomfort. Conventionally, heating, ventilation, and air conditioning systems are used to provide comfort. However, they require a huge amount of energy, leading to an increase in global warming, and are limited to indoor applications. In recent decades, scientists across the world have been working to provide thermal comfort through wearable innovative textiles. This review article presents recent innovative strategies for moisture and/or thermal management at the material, filament/fiber, yarn, and fabric scales. It also summarizes the passive/active textile models for comfort. Integrating electrical devices in garments can rapidly control the skin temperature, and is dynamic and useful for a wide range of environmental conditions. However, their use can be limited in some situations due to their bulky design and batteries, which must be frequently recharged. Furthermore, adaptive textiles enable the wearer to maintain comfort in various temperatures and humidity without requiring batteries. Using these wearable textiles is convenient to provide thermal comfort at the individual level rather than controlling the entire building temperature.Show less >
Show more >The human body exchanges heat through the environment by various means, such as radiation, evaporation, conduction, and convection. Thermo-physiological comfort is associated with the effective heat transfer between the body and the atmosphere, maintaining the body temperature in a tolerable thermal range (36.5–37.5ºC). In order to ensure comfort, the body heat must be preserved or emitted, depending on external conditions. If the body heat is not properly managed, it can cause hyperthermia, heatstroke, and thermal discomfort. Conventionally, heating, ventilation, and air conditioning systems are used to provide comfort. However, they require a huge amount of energy, leading to an increase in global warming, and are limited to indoor applications. In recent decades, scientists across the world have been working to provide thermal comfort through wearable innovative textiles. This review article presents recent innovative strategies for moisture and/or thermal management at the material, filament/fiber, yarn, and fabric scales. It also summarizes the passive/active textile models for comfort. Integrating electrical devices in garments can rapidly control the skin temperature, and is dynamic and useful for a wide range of environmental conditions. However, their use can be limited in some situations due to their bulky design and batteries, which must be frequently recharged. Furthermore, adaptive textiles enable the wearer to maintain comfort in various temperatures and humidity without requiring batteries. Using these wearable textiles is convenient to provide thermal comfort at the individual level rather than controlling the entire building temperature.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Submission date :
2023-06-20T11:53:48Z
2024-03-21T09:02:06Z
2024-03-21T09:02:06Z