A pyrolysis model for the thermal decomposition ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
A pyrolysis model for the thermal decomposition of low-density polyethylene blended with ammonium polyphosphate and pentaerythritol
Auteur(s) :
Coimbra, Alain [Auteur]
Sarazin, Johan [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Institut universitaire de France [IUF]
Legros, Guillaume [Auteur]
Consalvi, Jean-Louis [Auteur]
Bourbigot, Serge [Auteur]
Sarazin, Johan [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Institut universitaire de France [IUF]
Legros, Guillaume [Auteur]
Consalvi, Jean-Louis [Auteur]
Bourbigot, Serge [Auteur]
Titre de la revue :
Fire Safety Journal
Nom court de la revue :
Fire Safety Journal
Numéro :
139
Pagination :
103813
Éditeur :
Elsevier BV
Date de publication :
2023-08
ISSN :
0379-7112
Résumé en anglais : [en]
In this work, a semi-empirical pyrolysis model is developed to predict the thermal decomposition behavior of an intumescent fire retardant (IFR) system consisting of ammonium polyphosphate/pentaerythritol (APP/PER) with ...
Lire la suite >In this work, a semi-empirical pyrolysis model is developed to predict the thermal decomposition behavior of an intumescent fire retardant (IFR) system consisting of ammonium polyphosphate/pentaerythritol (APP/PER) with the ratio 3:1 (wt/wt) in a low-density polyethylene (LDPE) matrix. This work is based on a previously developed semi-global reaction mechanism for the degradation of LDPE and APP/PER, which consists of two consecutive first-order reactions for the LDPE and five first and second-order reactions for the APP/PER combination. The apparent properties that define heat transport inside the pyrolyzing solid are determined via inverse modeling of cone calorimeter experiments for the pure LDPE and then for the complete IFR system. This is achieved by using the Shuffled Complex Evolution optimization algorithm. The flame heat flux in the cone calorimeter experiments is also evaluated by targeting the heat release rate (HRR) data in the optimization process of one of the cone radiative heat setups. The optimized parameters and flame heat feedback are in line with the literature and the robustness of the model is assessed by a comparison with the experimental data for a wide range of cone heat fluxes. Ignition times and peaks of HRR and total HRs are within the engineering accuracy whatever the flux conditions for both pure LDPE and the IFR system.Lire moins >
Lire la suite >In this work, a semi-empirical pyrolysis model is developed to predict the thermal decomposition behavior of an intumescent fire retardant (IFR) system consisting of ammonium polyphosphate/pentaerythritol (APP/PER) with the ratio 3:1 (wt/wt) in a low-density polyethylene (LDPE) matrix. This work is based on a previously developed semi-global reaction mechanism for the degradation of LDPE and APP/PER, which consists of two consecutive first-order reactions for the LDPE and five first and second-order reactions for the APP/PER combination. The apparent properties that define heat transport inside the pyrolyzing solid are determined via inverse modeling of cone calorimeter experiments for the pure LDPE and then for the complete IFR system. This is achieved by using the Shuffled Complex Evolution optimization algorithm. The flame heat flux in the cone calorimeter experiments is also evaluated by targeting the heat release rate (HRR) data in the optimization process of one of the cone radiative heat setups. The optimized parameters and flame heat feedback are in line with the literature and the robustness of the model is assessed by a comparison with the experimental data for a wide range of cone heat fluxes. Ignition times and peaks of HRR and total HRs are within the engineering accuracy whatever the flux conditions for both pure LDPE and the IFR system.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2023-12-12T12:46:49Z