Monodromies at infinity of non-tame polynomials
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Monodromies at infinity of non-tame polynomials
Author(s) :
Takeuchi, Kiyoshi [Auteur]
Institute of Mathematics, University of Tsukuba
Tibar, Mihai [Auteur]
Université de Lille, Sciences et Technologies
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institute of Mathematics, University of Tsukuba
Tibar, Mihai [Auteur]
Université de Lille, Sciences et Technologies
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Bulletin de la SMF
Pages :
477-506
Publication date :
2016-08-18
HAL domain(s) :
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Variables complexes [math.CV]
Mathématiques [math]/Variables complexes [math.CV]
English abstract : [en]
We consider the monodromy at infinity and the monodromies around the bifurcation points of polynomial functions $f : \mathbb C^n \longrightarrow \mathbb C$ which are not tame and might have non-isolated singularities. Our ...
Show more >We consider the monodromy at infinity and the monodromies around the bifurcation points of polynomial functions $f : \mathbb C^n \longrightarrow \mathbb C$ which are not tame and might have non-isolated singularities. Our description of their Jordan blocks in terms of the Newton polyhedra and the motivic Milnor fibers relies on two new issues: the non-atypical eigenvalues of the monodromies and the corresponding concentration results for their generalized eigenspaces.Show less >
Show more >We consider the monodromy at infinity and the monodromies around the bifurcation points of polynomial functions $f : \mathbb C^n \longrightarrow \mathbb C$ which are not tame and might have non-isolated singularities. Our description of their Jordan blocks in terms of the Newton polyhedra and the motivic Milnor fibers relies on two new issues: the non-atypical eigenvalues of the monodromies and the corresponding concentration results for their generalized eigenspaces.Show less >
Language :
Anglais
Popular science :
Non
Comment :
22 pages.
Collections :
Source :
Files
- 1208.4584
- Open access
- Access the document