Simulation of fluid and particles flows: ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes
Author(s) :
Carrillo, José Antonio [Auteur]
Departament de Matemàtiques [Barcelona] [UAB]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Lafitte, Pauline [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Departament de Matemàtiques [Barcelona] [UAB]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Lafitte, Pauline [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Journal of Computational Physics
Pages :
7929--7951
Publisher :
Elsevier
Publication date :
2008
ISSN :
0021-9991
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
English abstract : [en]
We propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense ...
Show more >We propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms. We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall behavior of the schemes.Show less >
Show more >We propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms. We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall behavior of the schemes.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- fulltext.pdf
- Open access
- Access the document