Mathematical derivation of a rubber-like ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Mathematical derivation of a rubber-like stored energy functional
Author(s) :
Alicandro, Roberto [Auteur]
Dipartimento di Automazione Elettromagnetismo Ingegneria dell'Informazione Matematica Industriale [DAEIMI]
Cicalese, Marco [Auteur]
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
Gloria, Antoine [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Dipartimento di Automazione Elettromagnetismo Ingegneria dell'Informazione Matematica Industriale [DAEIMI]
Cicalese, Marco [Auteur]
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
Gloria, Antoine [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Journal title :
Comptes rendus de l'Académie des sciences. Série I, Mathématique
Pages :
479-482
Publisher :
Elsevier
Publication date :
2007
ISSN :
0764-4442
HAL domain(s) :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Physique mathématique [math-ph]
English abstract : [en]
In this note, we consider a stochastic network of interacting points to which we associate an energy. We study the variational convergence of such an energy when the typical distance of the network goes to zero. We prove ...
Show more >In this note, we consider a stochastic network of interacting points to which we associate an energy. We study the variational convergence of such an energy when the typical distance of the network goes to zero. We prove that the limit energy can be written as an integral functional, whose energy density is deterministic, hyperelastic and frame-invariant. This derivation allows us in particular to obtain a continuous energy density associated to cross-linked polymer networks.Show less >
Show more >In this note, we consider a stochastic network of interacting points to which we associate an energy. We study the variational convergence of such an energy when the typical distance of the network goes to zero. We prove that the limit energy can be written as an integral functional, whose energy density is deterministic, hyperelastic and frame-invariant. This derivation allows us in particular to obtain a continuous energy density associated to cross-linked polymer networks.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- ACG-07.pdf
- Open access
- Access the document
- ACG-07.pdf
- Open access
- Access the document