Hermite variations of the fractional ...
Document type :
Pré-publication ou Document de travail
Title :
Hermite variations of the fractional Brownian sheet
Author(s) :
Réveillac, Anthony [Auteur]
Institut für Mathematik [Berlin]
Stauch, Michael [Auteur]
Institut für Mathematik [Berlin]
Tudor, Ciprian A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut für Mathematik [Berlin]
Stauch, Michael [Auteur]
Institut für Mathematik [Berlin]
Tudor, Ciprian A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
English keyword(s) :
Limit theorems
Hermite variations
Multiple stochastic integrals
Malliavin calculus
Weak convergence
Hermite variations
Multiple stochastic integrals
Malliavin calculus
Weak convergence
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
English abstract : [en]
We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet $W^{\alpha, \beta}$ with Hurst parameter $(\alpha, \beta) \in (0,1)^2$. When $0<\alpha \leq 1-\frac{1}{2q}$ ...
Show more >We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet $W^{\alpha, \beta}$ with Hurst parameter $(\alpha, \beta) \in (0,1)^2$. When $0<\alpha \leq 1-\frac{1}{2q}$ or $0<\beta \leq 1-\frac{1}{2q}$ a central limit theorem holds for the renormalized Hermite variations of order $q\geq 2$, while for $1-\frac{1}{2q}<\alpha, \beta < 1$ we prove that these variations satisfy a non-central limit theorem. In fact, they converge to a random variable which is the value of a two-parameter Hermite process at time $(1,1)$.Show less >
Show more >We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet $W^{\alpha, \beta}$ with Hurst parameter $(\alpha, \beta) \in (0,1)^2$. When $0<\alpha \leq 1-\frac{1}{2q}$ or $0<\beta \leq 1-\frac{1}{2q}$ a central limit theorem holds for the renormalized Hermite variations of order $q\geq 2$, while for $1-\frac{1}{2q}<\alpha, \beta < 1$ we prove that these variations satisfy a non-central limit theorem. In fact, they converge to a random variable which is the value of a two-parameter Hermite process at time $(1,1)$.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- RST.pdf
- Open access
- Access the document