Idéaux fermés d'algèbres de Beurling ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Idéaux fermés d'algèbres de Beurling analytiques sur le bidisque
Author(s) :
Bouya, Brahim [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
El-Fallah, Omar [Auteur]
Kellay, Karim [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
El-Fallah, Omar [Auteur]
Kellay, Karim [Auteur]
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Journal title :
Bulletin des Sciences Mathématiques
Pages :
588-604
Publisher :
Elsevier
Publication date :
2010
ISSN :
0007-4497
English keyword(s) :
Beurling algebras
closed ideals
Bézout's identity
closed ideals
Bézout's identity
HAL domain(s) :
Mathématiques [math]/Variables complexes [math.CV]
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Mathématiques [math]/Analyse fonctionnelle [math.FA]
English abstract : [en]
We study the closed ideal in the Beurling algebras $\aA^{+}_{\alpha,\beta}$ of holomorphic function $f$ in the bidisc such that $$\sum\limits_{n,m\geq 0} |\widehat{f}(n,m)|(1+n)^{\alpha}(1+m)^\beta<\infty.$$ We characterize ...
Show more >We study the closed ideal in the Beurling algebras $\aA^{+}_{\alpha,\beta}$ of holomorphic function $f$ in the bidisc such that $$\sum\limits_{n,m\geq 0} |\widehat{f}(n,m)|(1+n)^{\alpha}(1+m)^\beta<\infty.$$ We characterize the functions $f\in \aA^+_{\alpha,\beta}$, under a restriction on their zero sets, such that the closed ideal generated by $f$ coincides with the ideal of all functions vanishing on the zero set of $f$.Show less >
Show more >We study the closed ideal in the Beurling algebras $\aA^{+}_{\alpha,\beta}$ of holomorphic function $f$ in the bidisc such that $$\sum\limits_{n,m\geq 0} |\widehat{f}(n,m)|(1+n)^{\alpha}(1+m)^\beta<\infty.$$ We characterize the functions $f\in \aA^+_{\alpha,\beta}$, under a restriction on their zero sets, such that the closed ideal generated by $f$ coincides with the ideal of all functions vanishing on the zero set of $f$.Show less >
Language :
Français
Popular science :
Non
ANR Project :
Collections :
Source :