Approximation of the finite dimensional ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Approximation of the finite dimensional distributions of multiple fractional integrals
Auteur(s) :
Bardina, Xavier [Auteur]
Departament de Matemàtiques [Barcelona] [UAB]
Es-Sebaiy, Khalifa [Auteur]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Departament de Matemàtiques [Barcelona] [UAB]
Es-Sebaiy, Khalifa [Auteur]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Journal of Mathematical Analysis and Applications
Pagination :
694-711
Éditeur :
Elsevier
Date de publication :
2010
ISSN :
0022-247X
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
We construct a family $I_{n_{\eps}}(f)_{t}$ of continuous stochastic processes that converges in the sense of finite dimensional distributions to a multiple Wiener-Itô integral $I_{n}^{H}(f1^{\otimes n}_{[0,t] })$ with ...
Lire la suite >We construct a family $I_{n_{\eps}}(f)_{t}$ of continuous stochastic processes that converges in the sense of finite dimensional distributions to a multiple Wiener-Itô integral $I_{n}^{H}(f1^{\otimes n}_{[0,t] })$ with respect to the fractional Brownian motion. We assume that $H>\frac{1}{2}$ and we prove our approximation result for the integrands $f$ in a rather general class.Lire moins >
Lire la suite >We construct a family $I_{n_{\eps}}(f)_{t}$ of continuous stochastic processes that converges in the sense of finite dimensional distributions to a multiple Wiener-Itô integral $I_{n}^{H}(f1^{\otimes n}_{[0,t] })$ with respect to the fractional Brownian motion. We assume that $H>\frac{1}{2}$ and we prove our approximation result for the integrands $f$ in a rather general class.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- conv-Ito-frac7.pdf
- Accès libre
- Accéder au document
- 0911.3223
- Accès libre
- Accéder au document