Bilinear oscillatory integrals and boundedness ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Bilinear oscillatory integrals and boundedness for new bilinear multipliers
Author(s) :
Bernicot, Frederic [Auteur]
Laboratoire de Mathématiques d'Orsay [LMO]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Germain, Pierre [Auteur]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Laboratoire de Mathématiques d'Orsay [LMO]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Germain, Pierre [Auteur]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Journal title :
Advances in Mathematics
Pages :
1739-1785
Publisher :
Elsevier
Publication date :
2010
ISSN :
0001-8708
English keyword(s) :
Bilinear operators
oscillatory integrals
oscillatory integrals
HAL domain(s) :
Mathématiques [math]/Analyse classique [math.CA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We consider bilinear oscillatory integrals, i.e. pseudo-product operators whose symbol involves an oscillating factor. Lebesgue space inequalities are established, which give decay as the oscillation becomes stronger ; ...
Show more >We consider bilinear oscillatory integrals, i.e. pseudo-product operators whose symbol involves an oscillating factor. Lebesgue space inequalities are established, which give decay as the oscillation becomes stronger ; this extends the well-known linear theory of oscillatory integral in some directions. The proof relies on a combination of time-frequency analysis of Coifman-Meyer type with stationary and non-stationary phase estimates. As a consequence of this analysis, we obtain Lebesgue estimates for new bilinear multipliers defined by non-smooth symbols.Show less >
Show more >We consider bilinear oscillatory integrals, i.e. pseudo-product operators whose symbol involves an oscillating factor. Lebesgue space inequalities are established, which give decay as the oscillation becomes stronger ; this extends the well-known linear theory of oscillatory integral in some directions. The proof relies on a combination of time-frequency analysis of Coifman-Meyer type with stationary and non-stationary phase estimates. As a consequence of this analysis, we obtain Lebesgue estimates for new bilinear multipliers defined by non-smooth symbols.Show less >
Language :
Anglais
Popular science :
Non
Comment :
35 pages, 3 figures
Collections :
Source :
Files
- 0911.1652
- Open access
- Access the document